Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1116k+Views

1924k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
CIE IGCSE Biology Topic 1 REVISION (Characteristics and classification of living organisms)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 1 REVISION (Characteristics and classification of living organisms)

(2)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Characteristics and classification of living organisms) of the CIE IGCSE Biology specification, for examination in 2020 and 2021. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Describe the characteristics of living organisms by defining the terms movement, respiration, sensitivity, growth, reproduction, excretion and nutrition State that organisms can be classified into groups by the features that they share Define and describe the binomial system of naming species as an internationally agreed system in which the scientific name of an organism is made up of two parts showing the genus and species List the main features used to place animals and plants into the appropriate kingdoms SUPPLEMENT Explain that classification systems aim to reflect evolutionary relationships Explain that classification is traditionally based on studies of morphology and anatomy Explain that the sequences of bases in DNA and of amino acids in proteins are used as a more accurate means of classification Explain that organisms which share a more recent ancestor (are more closely related) have base sequences in DNA that are more similar than those that share only a distant ancestor List the main features used to place all organisms into one of the five kingdoms: Animal, Plant, Fungus, Prokaryote, Protoctist List the features of viruses, limited to protein coat and genetic material The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Are you the KING of the KINGDOMS” where they have to name the kingdoms involved based on a feature whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual IGCSE exams
Xylem, phloem & sclerenchyma tissue (Edexcel A-level Biology)
GJHeducationGJHeducation

Xylem, phloem & sclerenchyma tissue (Edexcel A-level Biology)

(2)
This lesson describes the similarities and differences between the xylem and phloem vessels and the sclerenchyma fibres. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.11 of the Pearson Edexcel A-level Biology A specification which states that students should be able to compare these tissues in terms of structure, position in the stem and function. The lessons begins by challenging the students to identify the substances that a plant needs for the cellular reactions, where they are absorbed and where these reactions occur in a plant. The aim of this task is to get the students to recognise that water and mineral ions are absorbed in the roots and needed in the leaves whilst the products of photosynthesis are in the leaves and need to be used all over the plant. Students will be reminded that the xylem and phloem are part of the vascular system responsible for transporting these substances and then the rest of the lesson focuses on linking structure to function. A range of tasks which include discussion points, exam-style questions and quick quiz rounds are used to describe how lignification results in the xylem as a hollow tube of xylem cells to allow water to move as a complete column. They will also learn that the narrow diameter of this vessel allows capillary action to move water molecules up the sides of the vessel. The same process is used to enable students to understand how the structures of the companion cells allows assimilates to be loaded before being moved to the sieve tube elements through the plasmodesmata. The final part of the lesson introduces the sclerenchyma tissue as part of the vascular bundle and along with the structure and function, the students will observe where this tissue is found in the stem in comparison to the xylem and phloem. It is estimated that it will take in excess of 2 hours of A-level teaching time to cover the detail which has been written into this lesson
Introduction to gene mutations (CIE International A-level Biology)
GJHeducationGJHeducation

Introduction to gene mutations (CIE International A-level Biology)

(2)
This detailed lesson has been written to act as an introduction to gene mutations and the potential effects on the polypeptide chain. The engaging PowerPoint and accompanying resources have been designed to cover point 6.2 (b) and © of the CIE International A-level Biology specification and explores how substitution, insertions and deletions can change the primary structure. The lesson has been written to tie in with previous lessons where the genetic code was introduced and students will be challenged to describe how the degenerate nature of the code means that a substitution mutation doesn’t always lead to a change in structure. As detailed in point ©, students will learn how a single change to the primary structure of the HBB gene results in abnormal haemoglobin and they are challenged to recall knowledge about the structure and function of haemoglobin whilst completing a detailed passage about sickle cell anaemia. Time is also taken to look at changes to the structure as a result of frameshift mutations and this is related to the non-overlapping code. This topic is met again in topic 16 so this lesson has been designed to act as an introduction before greater detail can be added
Nature of the genetic code (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Nature of the genetic code (Edexcel Int. A-level Biology)

(2)
This lesson describes the nature of the genetic code as near universal, non-overlapping and degenerate and relates this to the triplet code. The engaging lesson PowerPoint has been designed to cover point 2.11 of the Edexcel International A-level Biology specification and clear links are made to protein synthesis and gene mutations which students will meet in the next lot of lessons. At the start of the lesson, the students are challenged to use their knowledge of the bases in DNA and RNA to complete a definition which describes the genetic code as being near universal, non-overlapping and degenerate. Time is taken to explain how three bases on DNA (a triplet) and three bases on mRNA (a codon) encode for a single amino acid or a stop codon and this is the triplet code. A quick quiz competition is used to generate the number 20 so that the students can learn that there are 20 proteinogenic amino acids in the genetic code. This leads into a challenge, where they have to use their prior knowledge of DNA to calculate the number of different DNA triplets (64) and the mismatch in number is then discussed and related back to the lesson topic. Moving forwards, base substitutions and base deletions are briefly introduced so that they can see how although one substitution can change the primary structure, another will change the codon but not the encoded amino acid. The lesson concludes with a brief look at the non-overlapping nature of the code so that the impact of a base deletion (or insertion) can be understood when covered in greater detail in the lesson covering point 2.14
CIE IGCSE Combined Science C3 REVISION (Atoms, elements and compounds)
GJHeducationGJHeducation

CIE IGCSE Combined Science C3 REVISION (Atoms, elements and compounds)

(2)
A lot of time and effort has gone into the design of this revision resource as it covers the very important Atoms, elements and compounds topic (C3) of the CIE IGCSE Combined Specification which will be examined in June and November 2020 and 2021. This topic tends to contribute a high volume of the questions in the examination papers as it contains fundamental understanding. The resource contains a detailed and engaging PowerPoint (87 slides) and associated worksheets, which have been differentiated to allow differing abilities the chance to complete the task. The range of activities that include exam questions, quick tasks and quiz competitions aim to cover as much of the content as possible but the following topics have received particular attention: Metals vs non-metals Using the proton and nucleon number to calculate the number of sub-atomic particles Atoms vs ions Drawing dot and cross diagrams for ionic compounds The structure of an ionic compound and the relation to its properties Drawing dot and cross diagrams for simple molecules Understanding of the terms solution, solvent, solute and soluble Throughout the lesson, links have been made to other modules (e.g. Electricity and chemistry) so that students can see how they will be expected to make these connections. The detail of this lesson means that it can be used a number of times and is ideal for revision during the learning of C3, at the end of the topic or in the lead up to mocks or terminal exams.
The mole & mole calculations (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

The mole & mole calculations (Edexcel GCSE Chemistry & Combined Science)

(2)
This lesson describes meaning of the mole and shows how this measurement is used in a range of calculations. The clear lesson PowerPoint presentation and accompanying question worksheet have been designed to cover points 1.50 & 1.51 of the Edexcel GCSE Chemistry specification and also covers those points in the Chemistry section of the Combined Science course. This lesson has been specifically written to explain the concept in a concise manner so that the key details are understood and embedded. Students are shown how to recognise when a mole calculation requires them to use Avogadro’s constant and when they should the formula including the relative formula mass.
AQA GCSE Science C10 REVISION (Using resources)
GJHeducationGJHeducation

AQA GCSE Science C10 REVISION (Using resources)

(2)
A short, concise revision lesson that uses a combination of exam questions, understanding checks, quick tasks and a quiz competition to help the students to assess their understanding of the topics found within unit C10 (Using resources) of the AQA GCSE Combined Science specification (specification point C5.10). The lesson includes useful hints and tips to encourage success in assessments. The topics that are tested within the lesson include: Potable water Waste water treatment Alternative methods of extracting metals Students will be engaged through the numerous quiz rounds including one called “It’s time for acTION” which requires students to work out a process (ending in -tion) from the provided definition
CIE International A-level Biology Topic 2 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE International A-level Biology Topic 2 REVISION (Biological molecules)

(2)
This is a fully-resourced and engaging REVISION LESSON which challenges the students on their knowledge and understanding of the topic 2 content (Biological molecules) of the CIE International A-level Biology specification. This topic isn’t always well understood by students so the lesson has been designed to include a wide range of activities that include differentiated exam questions, quick tasks and quiz competitions which will engage the students whilst they assess their progress. It has been designed to cover as much of the specification as possible but the following sub-topics have received particular attention: Formation of polysaccharides by glycosidic bonds between monomers Recognising monosaccharides, disaccharides and polysaccharides The structure of starch and glycogen in relation to their function as stores and providers of energy Water as a solvent with a high specific heat capacity and a high specific latent heat of vaporisation Structure and bonding in proteins The structure of globular and fibrous proteins as demonstrated by haemoglobin and collagen The structure and function of cellulose Links are made to other topics so that students are able to see how questions can include parts from different Biological concepts.
Edexcel GCSE Physics Topics 4 & 5 REVISION (Waves, light & the EM spectrum)
GJHeducationGJHeducation

Edexcel GCSE Physics Topics 4 & 5 REVISION (Waves, light & the EM spectrum)

(2)
This is a highly engaging, detailed and fully-resourced revision lesson which covers topics 4 & 5 of the Pearson Edexcel GCSE Physics specification. Due to the close links between the topics of waves and light and the electromagnetic spectrum, it was decided to design a single resource that challenged the students on their knowledge and understanding of the Physics detailed in these two topics. The PowerPoint and acccompanying resource have been written to include a wide range of activities which include exam-style questions (with clearly explained answers), differentiated tasks and quick quiz competitions. These activities challenge the following specification points: Define and use the terms frequency, wavelength, amplitude and period Recall and use both of the equations to calculate wave speed Describe how to measure the velocity of sound in air and ripples on water surfaces Describe the effects of reflection and refraction Explain how waves will be refracted at a boundary in terms of a change in direction and speed Recall that sound waves can be ultrasound and infrasound Explain uses of ultrasound Explain, with the aid of diagrams, refraction, the critical angle and total internal reflection Explain the difference between specular and diffuse reflection Recall that the EM waves are transverse and travel at the speed of light in a vacuum Describe the EM spectrum as continuous from radio waves to gamma rays Describe the uses and harmful effects of the EM waves To fall in line with the heavy mathematical content of the specification, there is a large emphasis on a range of mathematical skills in this lesson which includes rearranging formula, converting between units and using standard form. Due to the detail of this lesson, it is estimated that it will take in excess of 2 hours of GCSE-allocated teaching time to cover the content and this allows this to be used at the end of the topic or in the lead up to mock or terminal examinations.
Electrolysis of solutions
GJHeducationGJHeducation

Electrolysis of solutions

(2)
A fully resourced lesson that includes a lesson presentation (27 slides) and an accompanying worksheet that guides students through the topic of the electrolysis of solutions and enables them to state the products at the electrodes from these reactions. The lesson focuses on the rules at the cathode and then the anode and regular understanding checks are used to ensure that learning has occured. This lesson has been designed for GCSE students (14 - 16 year olds)
HIV and AIDS (AQA A-level Biology)
GJHeducationGJHeducation

HIV and AIDS (AQA A-level Biology)

(2)
This fully-resourced lesson describes the structure of HIV, its replication inside helper T cells and EXPLAINS how it causes the symptoms of AIDS. The PowerPoint and accompanying resources are part of the 5th lesson in a series of 7 that cover the details of point 2.4 of the AQA A-level Biology specification. The structure of viruses was covered during the lessons in topic 2.1, so this lesson starts by challenging the students to recall the capsid, genetic material in the form of viral RNA and the lipid envelope. At this point, the students are introduced to gp120, the glycoprotein which is exposed on the surface of the lipid envelope, as this structure is critical for the entry of the virus into host cells. Students will annotate a basic diagram of HIV with these four structures which also has gp41 labelled. A quick quiz competition introduces the names of the enzymes found inside the capsid and the students will learn that integrase allows the viral DNA to be integrated into the host’s genome whilst reverse transcriptase catalyses the reaction to form DNA from RNA. A prior knowledge check challenges the students to identify the helper T cells from a description of their function and they are informed that these immune cells have the CD4 glycoprotein on their surface. Moving forwards, the main part of the lesson describes how HIV binds to the helper T cells, injects its capsid and integrates its DNA into the host’s genome in order to replicate to form virus particles (virions). Students are guided through the formation of a detailed answer about the mechanism of HIV and have to input key terms and structures where information is missing. Students will learn that the increase in the number of virus particles and a decrease in helper T cells and other immune cells results in infections like TB and by opportunistic pathogens and that this stage is recognised as AIDS The final part of the lesson challenges the students to explain why antibiotics are ineffective against viruses through a series of exam-style questions and the final task gets them to work as a class where they have to study the replication process once more to suggest drug actions that might be used to treat HIV
Pearson Edexcel IGCSE Physics Topic 1 REVISION (Forces and motion)
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics Topic 1 REVISION (Forces and motion)

(2)
This is a detailed and engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Forces and motion) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Know and use the relationship between average speed, distance moved and time taken Know and use the relationship between acceleration, change in velocity and time taken Plot and explain velocity-time graphs Determine the distance travelled from the area between a velocity−time graph and the time axis Use the relationship between final speed, initial speed, acceleration and distance moved Understand how vector quantities differ from scalar quantities Understand that force is a vector quantity Know that friction is a force that opposes motion Know and use the relationship between unbalanced force, mass and acceleration Know and use the relationship between weight, mass and gravitational field strength Know that the stopping distance of a vehicle is made up of the sum of the thinking distance and the braking distance Describe the factors affecting vehicle stopping distance, including speed, mass, road condition and reaction time Know and use the relationship between momentum, mass and velocity Use the idea of momentum to explain safety features Use the conservation of momentum to calculate the mass, velocity or momentum of objects Use the relationship between force, change in momentum and time taken Demonstrate an understanding of Newton’s third law Know and use the relationship between the moment of a force and its perpendicular distance from the pivot The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Fill the VOID” where they have to compete to be the 1st to complete one of the know and use equations whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
OCR GCSE Combined Science Paper 3 REVISION (Chemistry topics C1-C3)
GJHeducationGJHeducation

OCR GCSE Combined Science Paper 3 REVISION (Chemistry topics C1-C3)

(2)
This is a detailed and engaging lesson presentation (59 slides) that combines exam questions and progress checks along with quiz competition rounds to enable students to assess their understanding of the specification content within topics C1 - 3 of the OCR GCSE Combined Science Gateway A 9 - 1 as can be assessed in Paper 3. All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained. The revision rounds in the competition include “The need to BALANCE”, “Number crazy” and “React to the REACTION”. This lesson has been designed for GCSE students.
Edexcel A-level Biology Topic 7 REVISION (Run for your life)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 7 REVISION (Run for your life)

(2)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within Topic 7 (Run for your life) of the EDEXCEL A-level Biology specification. The topics tested within this lesson include: The sliding filament theory Aerobic respiration Lactate and anaerobic respiration The cardiac cycle How heart rate is increased Structure of a muscle fibre Homeostasis Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Edexcel GCSE Biology Topic 5 REVISION (Health, disease and the development of medicines)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 5 REVISION (Health, disease and the development of medicines)

(2)
This is a fully-resourced REVISION lesson that consists of a detailed and engaging PowerPoint (86 slides) and associated worksheets that challenge the students on their knowledge of the content of Topic 5 (Health, disease and the development of medicines) of the Edexcel GCSE Biology specification. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to include as much which of the content from topic 5, but the following sub-topics have been given particular attention: Identification of bacterial, fungal and viral diseases in animals and plants The treatment of bacterial infections The reduction and prevention of the spread of pathogens The body’s response to immunisation The physical defences of humans and plants The risk factors of CHD and possible treatments BMI The production and use of monoclonal antibodies This lesson can be used at numerous points over the duration of the course, as an end of topic revision aid, in the lead up to the mocks or in the lead up to the actual GCSE exams.
Phylogeny
GJHeducationGJHeducation

Phylogeny

(2)
A concise lesson presentation (20 slides) and associated worksheet that guides students through phylogenetic trees and helps them to be able to interpret these diagrams. The lesson begins by stating three key points about the trees which will form the basis of their understanding. Moving forwards, a series of questions with explained answers are used to show how common ancestors in the past can be used to work out which present day organisms are the most closely related. Students are given lots of opportunities to assess their understanding and check that they can explain. This lesson has been written for GCSE but could be used as a recap for those students studying at A-level
Edexcel GCSE Biology Topic 1 REVISION (Key concepts in Biology)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 1 REVISION (Key concepts in Biology)

(2)
This is an engaging and fully-resourced revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Key concepts in Biology) of the Edexcel GCSE Biology 9-1 specification. The specification points that are covered in this revision lesson include: Explain how the sub-cellular structures of eukaryotic and prokaryotic cells are related to their functions Describe how specialised cells are adapted to their function Know that changes in microscope technology, including electron microscopy, have enabled us to see cell structures and organelles with more clarity and detail than in the past Demonstrate an understanding of the relationship between quantitative units in relation to cells Explain how substances are transported into and out of cells, including by diffusion, osmosis and active transport Core Practical: Investigate osmosis in potatoes Calculate percentage gain and loss of mass in osmosis The students will thoroughly enjoy the range of activities, which include quiz competitions such as “CELL, CELL, CELL” where they have to compete to quickly identify specialised cells from their descriptions whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
Edexcel GCSE Biology REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Biology REVISION LESSONS

9 Resources
This bundle of 9 revision lessons covers the specification content in all of the topics of the Pearson Edexcel GCSE Biology 9-1 specification. Topic 1: Key concepts in Biology Topic 2: Cells and control Topic 3: Genetics Topic 4: Natural selection and modification Topic 5: Health, disease and the development of medicines Topic 6: Plant structures and functions Topic 7: Animal coordination, control and homeostasis Topic 8: Exchange and transport in animals Topic 9: Ecosystems and material cycles All of the lessons have been written to include a range of activities to engage the students whilst enabling them to assess and evaluate their content knowledge so that they recognise those areas which will need further attention prior to the exams.
Variation
GJHeducationGJHeducation

Variation

(2)
An engaging lesson presentation (41 slides) and accompanying worksheet that looks at the different causes of variation and the different types of variation. The lesson begins by challenging the students to pick out a set of siblings from a series of pictures and then getting them to explain scientifically why they made the decision that they did. Moving forwards, students will recognise that one cause of variation is genes. Students are shown a pair of identical twins and asked to explain why they look different despite their identical genes so that they can understand that the environment also affects variation. Students will also meet discontinuous and continuous variation and will understand how this data should be represented. There are progress checks throughout the lesson to allow the students to assess their understanding. This lesson has been designed for KS3 and GCSE students.
Diabetes Type I and II
GJHeducationGJHeducation

Diabetes Type I and II

(2)
A detailed and engaging lesson presentation (43 slides) and accompanying worksheets that introduces students to the disease, Diabetes (mellitus), and focusses on the similarities and differences between types I and II. The lesson begins by challenging the students mathematically to get the answers 1 and 2 and then to see whether they can link these numbers to a disease. A variety of tasks, which includes competitions and progress checks, are used to get the students to recognise the differences and state which of the types they belong to. This lesson has been designed for GCSE students and can be used with higher level students. However, a lesson more appropriate for A-level Biology students is named “Diabetes Mellitus Type I and II” and is available in my resources