A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This lesson uses a 10 question multiple-choice assessment to provide students with the opportunity to assess their knowledge of neuronal communication. Module 5.1.3 of the OCR A-level biology A specification covers the role of mammalian sensory receptors, the structure and function of neurones, the generation and transmission of nerve impulses and the structure and roles of synapses and these 10 questions attempt to challenge their overall understanding of this content. The lesson also includes a PowerPoint with the answers to the questions and also further understanding checks to challenge knowledge not directly covered by the multiple-choice assessment. There are also some prior knowledge checks and links to the future.
This lesson describes the course of events that lead to atherosclerosis and explains how the human body can be affected by this inflammatory disease. The engaging PowerPoint and accompanying resources have been planned to cover the content of point 1.10 of the Edexcel International A-level biology specification and therefore includes descriptions of endothelial dysfunction, plaque formation and raised blood pressure.
The lesson begins with a task where the students have to use their knowledge of the numbers associated with biology to move forwards and backwards through the alphabet to reveal the name of the disease, atherosclerosis. Students will learn that this is a chronic inflammatory disease. As shown in the cover image, the main part of the lesson uses a step-by-step guide to go through the events, from endothelium damage, monocyte recruitment, macrophage differentiation and eventually the protrusion of plaques into the lumen of the artery. Understanding and prior knowledge checks and quiz quiz competitions are used during this section of the lesson to allow the students to assess their progress and to introduce key terms in a memorable fashion. All answers to any questions are embedded into the PowerPoint.
The final part of the lesson uses a series of exam-style questions to consider how atherosclerosis in different blood vessels could lead to medical issues such as myocardial infarctions and strokes.
This lesson describes the course of events that lead to atherosclerosis and explains the issues for the human body related to this inflammatory disease. The engaging PowerPoint and accompanying resources have been planned to cover the content of point 1.5 of the Pearson Edexcel A-level biology A specification.
The lesson begins with a task where the students have to use their knowledge of the numbers associated with biology to move forwards and backwards through the alphabet to reveal the name of the disease, atherosclerosis. Students will learn that this is a chronic inflammatory disease. As shown in the cover image, the main part of the lesson uses a step-by-step guide to go through the events, from endothelium damage, monocyte recruitment, macrophage differentiation and eventually the protrusion of plaques into the lumen of the artery. Understanding and prior knowledge checks and quiz quiz competitions are used during this section of the lesson to allow the students to assess their progress and to introduce key terms in a memorable fashion. All answers to any questions are embedded into the PowerPoint.
The final part of the lesson uses a series of exam-style questions to consider how atherosclerosis in different blood vessels could lead to medical issues such as myocardial infarctions and strokes.
This revision lesson uses a 15 question multiple-choice assessment to challenge the students on their knowledge of the content of module 5.1.2. In addition to the assessment, this lesson includes a PowerPoint where the answers are revealed, a series of key points linked to the OCR A-level biology A specification, and additional questions to challenge knowledge not directly covered by the 15 multiple-choice questions.
The topics challenged by the assessment are:
The meaning of the term excretion (as opposed to egestion)
The structure of the liver
The formation of urea by the ornithine cycle
The regions of the kidney
Ultrafiltration in the glomerulus
The structure and function of the PCT
The countercurrent multiplier mechanism in the loop of Henle
Osmoregulation
Homeostasis
The use of renal dialysis
Monoclonal antibodies in diagnostic tests
This lesson explains the relative energy values of the respiratory substrates, carbohydrates, lipids and proteins. The PowerPoint and accompanying resources have been planned to cover the content of point 12.1 (4) of the CIE A-level biology specification (for assessment in 2025 - 2027).
The lesson begins with a challenge, where the students have to recognise the key term substrate using either 1 or 2 descriptions. The definition of a respiratory substrate is provided and students will learn that although glucose is the chief respiratory substrate, lipids and proteins can be metabolised to generate molecules of ATP. A quick quiz round is used to introduce the relative energy value per gram of carbohydrate and then this is used as a reference value for the remainder of the lesson. Students will learn that the energy value is higher for lipids and this is explained, making reference to the stages of respiration that will be covered in greater depth in the 12.2 lessons. The final part of the lesson considers proteins and makes a link to deamination, which again will be covered later in the course.
The lesson contains multiple understanding checks and all answers are embedded into the PowerPoint to allow students to assess their progress.
This lesson describes the meaning of the respiratory quotient and guides students through the calculation of values from respiration equations. The PowerPoint and accompanying resource have been planned to cover the content of points 12.1 (5 & 6) of the CIE A-level biology specification (for assessment in 2025 - 2027).
The lesson begins with a recall challenge, where the students have to demonstrate their knowledge of ATP and relative energy values to reveal the two letters, RQ. The meaning of a quotient is provided and time allocated, where they are encouraged to discuss which two respiratory values might be used, using their brief knowledge of aerobic respiration from iGCSE. The formula is provided and then a worked example used to model the calculation. The obtained value of 1.0 is explained as the RQ if metabolism consists entirely of carbohydrates. Two exam-style questions are then used to challenge the students to apply their understanding and they’ll reveal the value of 0.7 for lipids. A quick quiz round introduces the range for amino acids as 0.8 - 0.9 before a final task gets them to obtain another value and to recognise that more than one type of molecule is often metabolised.
The lesson is full of understanding and prior knowledge checks, and the answers are embedded into the PowerPoint to allow students to assess their progress.
This lesson guides students through the respiratory quotient calculation and explains what the different calculated values indicate. The PowerPoint and accompanying resource have been planned to cover the content of point 7.6 of the Edexcel International A-level biology specification.
The lesson begins with a recall challenge, where the students have to demonstrate their knowledge of respiration to reveal the two letters, RQ. The meaning of a quotient is provided and time allocated, where they are encouraged to discuss which two respiratory values might be used. The formula is provided and then a worked example used to model the calculation. The obtained value of 1.0 is explained as the RQ if metabolism consists entirely of carbohydrates. Two exam-style questions are then used to challenge the students to apply their understanding and they’ll reveal the value of 0.7 for lipids. A quick quiz round introduces the range for amino acids as 0.8 - 0.9 before a final task gets them to obtain another value and to recognise that more than one type of molecule is often metabolised.
The lesson is full of understanding and prior knowledge checks, and the answers are embedded into the PowerPoint to allow students to assess their progress.
This lesson describes the structure and function of a spinal reflex arc, including the grey and white matter of the spinal cord. The PowerPoint and accompanying resources have been designed to cover the content of point 8.3 of the Edexcel International A-level biology specification.
At the start of the lesson, the students are challenged to recognise the connections between three groups of key terms, and this acts to remind them of the sensory, motor and relay neurone, different types of muscle tissue and some reflexes. Time is taken to ensure that students understand that a spinal reflex arc is a direct neural pathway through the spinal cord and does not involve processing by the brain. Some of the content was covered at GCSE and in the first two lessons of topic 8, so this lesson has been specifically planned to challenge their recall of this content and then to build upon it, and understanding and prior knowledge checks are used throughout to allow them to assess their progress. The students will be able to recognise the different matter of the spinal cord, which is named according to the presence of myelinated or unmyelinated neurones and they will also understand how sensory neurones enter via the dorsal root and motor neurones exit via the ventral root. Moving forwards, two examples of real biological reflexes are used to increase relevance, and students will see how the knee jerk reflex is unusual as it doesn’t contain a relay neurone.
References to synapses, myelination and saltatory conduction are included in the lesson and brief details provided before these are covered in upcoming topic 8 lessons.
This lesson describes the protective effect of a simple reflex, as exemplified by those which involve the sensory, relay and motor neurones. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 lessons which have been planned to cover the content of point 6.1.1 of the AQA A-level biology specification, titled “Survival and response”.
As shown on the cover image, the lesson begins with a challenge, where the students have to recognise the connection between key terms which have been grouped together. This will remind them of the names of three types of neurones, the three types of muscle tissue and some reflexes. Time is taken at the start to ensure that students understand that although the brain might be informed of a reflex, it isn’t involved in the processing to coordinate the movement. At the same time, the role of the other part of the CNS, the spinal cord in spinal reflexes, is emphasised. This lesson has been specifically planned to build on their knowledge of reflex actions from GCSE and to build in the detail that will support them in this lesson and as they move through the content of topic 6. Ultimately, students will understand how the rapid response of a simple reflex allows organisms to avoid damage and survive, due to the nervous pathway only consisting of three neurones, and therefore less synapses than other reactions.
Understanding checks, in the form of exam-style questions are written into the lesson and the answers embedded into the PowerPoint to allow students to assess their progress against the current topic.
The two other lessons in this series covering the detail of specification point 6.1.1 are named “responses in flowering plants” and “taxes and kineses”.
This lesson describes the stages of succession from colonisation to the formation of a climax community. The PowerPoint and accompanying worksheets have been designed to cover the content of point 5.15 of the Edexcel International A-level Biology specification.
This lesson uses a step-by-step method to guide the students through each stage of the process of succession, explaining each of the gradual, progressive changes that occur in a community over time. At each stage, time is taken to consider the organisms involved. There is a focus on lichens as examples of pioneer species and students will understand how colonisation by these organisms is critical to provide organic matter and to turn the bare ground into soil so it is habitable by other species. The island of Surtsey in Iceland is used as a real-world example and shows how different parts of an area can be at different stages of succession.
Understanding and prior knowledge checks are embedded into the PowerPoint (along with the answers) to allow students to assess their progress against the current topic and to encourage them to make links to previously-covered work.
Topic 8 of the Edexcel International A-level biology specification is content heavy and therefore all 11 lessons included in this bundle have been planned to cover this content in an engaging and memorable way. The lessons are filled with a wide variety of tasks, including understanding and prior knowledge checks, guided discussion periods and quick quiz competitions. Answers to all of the knowledge checks are embedded into the PowerPoints to allow the students to assess their progress.
The following specification points are covered by this bundle:
8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.8, 8.10, 8.13, 8.14, 8.18, 8.19, 8.20
If you would like to get a sense for the quality of the lessons in this bundle, then download the nervous and hormonal control, saltatory conduction and pupil reflex lessons as these have been shared for free.
This lesson describes how the loop of Henle acts as a countercurrent multiplier to increase the reabsorption of water. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 2 lessons which have been designed to cover point 7.20 of the Edexcel International A-level biology specification.
The lesson begins by challenging the students to recognise that the glomerular filtrate entering the loop will only contain water, ions and urea if the kidneys are functioning properly. Time is then taken to look at the structure of the loop of Henle, focusing on the descending and ascending limbs, and their differing permeabilities. Students will be reminded that this part of the nephron is located in the renal medulla, before a step-by-step guide is used to describe how the transfer of ions, particularly sodium ions, from the ascending limb to the descending limb, creates a very negative water potential in this region of the kidney. This allows water to move out of the descending limb to the tissue fluid and then into the capillaries.
The next task has been designed to challenge the students on their knowledge of the numbers associated with biology to reveal the key term, countercurrent. They will learn that the countercurrent flow principle involves fluids flowing in opposite directions past each other and an example in bony fish is used to increase the relevance, before they understand how this multiplier works in the loop to increase water reabsorption.
The next part of the lesson challenges students to consider the bigger picture as they learn that this decreasing water potential in the medulla allows water to be reabsorbed from the filtrate in the collecting duct too.
The remainder of the lesson uses the real-world examples of the hopping mouse and kangaroo rat to check student understanding, and there are also prior knowledge checks to encourage students to make links to relevant content from earlier topics. All answers are embedded into the PowerPoint.
This lesson describes the location and functions of the cerebral hemispheres, cerebellum, medulla oblongata and hypothalamus and pituitary gland. The engaging PowerPoint and accompanying resources have been designed to cover point 8.14 of the Edexcel International A-level biology specification.
The lesson begins with a multiple-choice question, where the students will learn that cerebrum is the Latin word for brain. This brain structure is described as two hemispheres and students will be introduced to the localisation of function of the 4 lobes of the cerebral cortex. It moves onto the cerebellum, focusing on its role of perfecting and coordinating movement, and explains how this is achieved through neural connections with the cerebrum. The control of heart rate by the medulla oblongata was covered in topic 7 and their recollection of the connections between receptors, the control centre and the effectors is challenged before the lesson concludes with an exploration of the connections between the hypothalamus and the two lobes of the pituitary gland, specifically in the mechanism of thermoregulation.
This is an extensive lesson covering a lot of detail, so as shown in the cover image, the lesson plan contains 5 quiz rounds as part of a competition which will help to maintain engagement whilst checking on their recall and understanding of content. There are also multiple understanding and prior knowledge checks which allow the students to assess their progress against the current topic and to make links to previously covered content. All answers to these knowledge checks are embedded into the PowerPoint.
It is likely that this lesson will take between 2 - 3 hours of teaching time.
This lesson explains how labelled DNA probes in microarrays can be used to identify active genes. The PowerPoint and accompanying resources have been designed to cover the content of point 8.20 of the Edexcel International A-level biology specification.
The lesson begins by introducing the BRCA genes, and the students will learn how faulty alleles of these two genes can increase an individual’s risk of developing breast cancer. Therefore, there is a need to be able to locate specific alleles like these, and this function is performed by DNA probes. The students are challenged to use the function of the probes to predict their structure and will understand that they are short lengths of single stranded DNA that have a base sequence complementary to the base sequence of part of the target allele. A quick quiz round is used to introduce hybridisation as a key term, to ensure that students recognise that the probe will bind if the complementary base sequence is encountered. Moving forwards, a DNA microarray is introduced to show that it’s possible to screen for multiple genes.
The remainder of the lesson considers how the DNA probes are used to screen for heritable conditions and drug responses, and real-life examples are used to increase relevance.
This lesson describes how epigenetic modifications like DNA methylation and histone modification can alter the activation of certain genes. The PowerPoint and accompanying resources have been planned to cover points 3.20 ii & iii of the Edexcel Internationational A-level biology specification, and also highlights that these modifications can be passed on following cell division.
The lesson begins by introducing the meaning of the prefix epi as on or above so students understand that epigenetics refers to changes in gene function due to factors beyond the genetic code. Moving forwards, they will learn that DNA methylation involves the attachment of a methyl group to cytosine and will come to understand how this inhibits transcription. They are challenged to recognise the pathogenesis of atherosclerosis through a variety of tasks before reading through a source detailing the results of a study between this cardiovascular condition and DNA methylation.
The remainder of the lesson considers how the acetylation of histone proteins affects the expression of genes.
Understanding and prior knowledge checks are embedded throughout the lesson (along with the answers) to allow the students to assess their progress on this topic and to encourage them to make links to the content of topics 1 - 2.
This lesson describes the role of auxins in elongation growth, specifically in the plant responses of phototropism and gravitropism. The PowerPoint and accompanying resources have been designed to cover point 15.2 (2) of the CIE A-level biology specification.
The lesson begins with a prior knowledge check, where the students have to identify key terms encountered across topics 1 - 14, and use their 1st letters to form the term, tropism. Students are reminded of the meaning of a tropism, and how these directional growth responses are determined by the direction of the external stimuli. They should have met auxins at this previous level, but will now be introduced to IAA, and will complete several tasks which check that they understand the key features of these chemicals, such as their location of production and method by which they move through the shoots and roots. The students are guided through the movement of IAA to the shaded side in a shoot during phototropism, and will learn how this uneven distribution leads to uneven growth. An exam-style question presents them with two further scenarios, where the tip of the shoot has been cut off or is covered, and the students need to describe and explain what will happen to the appearance of the shoot after a week. Moving forwards, the students will learn how the pumping of hydrogen ions acidifies the cell wall and the subsequent activation of expansin proteins are involved in the cell elongation.
The remainder of the lesson discusses the response to gravity and explains how shoots and roots respond differently.
The lesson is full of understanding and prior knowledge checks and all answers are embedded into the PowerPoint.
The 8 lessons included in this bundle are detailed and engaging and have been filled with a variety of tasks to challenge the students on their understanding of the content of topic 8, which is titled GREY MATTER. These lessons cover the earlier specification points in this topic, focusing on the conduction of impulses through the mammalian nervous system.
If you would like to view the quality of these lessons, then download the neurones, pupil dilation and nervous and hormonal control lessons as these have been uploaded for free.
This lesson describes the location and functions of the cerebral hemispheres, cerebellum, medulla oblongata and hypothalamus. The engaging PowerPoint and accompanying resources have been designed to cover point 8.8 of the Pearson Edexcel A-level biology A (SNAB) specification and also includes descriptions of the link between the hypothalamus and the anterior and posterior lobes of the pituitary gland.
The lesson begins with a multiple-choice question, where the students will learn that cerebrum is the Latin word for brain. This brain structure is described as two hemispheres and students will be introduced to the localisation of function of the 4 lobes of the cerebral cortex. It moves onto the cerebellum, focusing on its role of perfecting and coordinating movement, and explains how this is achieved through neural connections with the cerebrum. The control of heart rate by the medulla oblongata is described before the lesson concludes with an exploration of the connections between the hypothalamus and the two lobes of the pituitary gland, specifically in the mechanisms of osmoregulation and thermoregulation.
This is an extensive lesson covering a lot of detail, so as shown in the cover image, the lesson plan contains 5 quiz rounds as part of a competition which will help to maintain engagement whilst checking on their recall and understanding of content. There are also multiple understanding and prior knowledge checks which allow the students to assess their progress against the current topic and to make links to previously covered content. All answers to these knowledge checks are embedded into the PowerPoint.
It is likely that this lesson will take between 2 - 3 hours of teaching time, but sections can be edited and removed if the teacher doesn’t want to look at a particular structure in that detail at this stage of study.
This lesson describes the location and main functions of the cerebrum, cerebellum, medulla oblongata and hypothalamus. The engaging PowerPoint and accompanying resources have been designed in line with point 9.4 (iii) of the Edexcel A-level biology B specification and also include descriptions of the link between the hypothalamus and the pituitary gland.
The lesson begins with a multiple-choice question, where the students will learn that cerebrum is the Latin word for brain. This brain structure is described as two hemispheres and students will be introduced to the localisation of function of the 4 lobes of the cerebral cortex. It moves onto the cerebellum, focusing on its role of perfecting and coordinating movement, and explains how this is achieved through neural connections with the cerebrum. The control of heart rate by the medulla oblongata is described before the lesson concludes with an exploration of the connections between the hypothalamus and the two lobes of the pituitary gland, specifically in the mechanisms of osmoregulation and thermoregulation.
As this is an extensive lesson covering a lot of detail, it has been planned to contain 5 quiz rounds as part of a competition which will help to maintain engagement whilst checking on their recall and understanding of content. There are also multiple understanding and prior knowledge checks which allow the students to assess their progress against the current topic and to make links to previously covered content. All answers to these knowledge checks are embedded into the PowerPoint.
It is likely that this lesson will take between 2 - 3 hours of teaching time, but sections can be edited and removed if the teacher doesn’t want to look at a particular structure in that detail at this stage of study.
This extensive lesson describes the structure of the human brain and the functions of its parts. The engaging PowerPoint and accompanying resources have been designed to be in line with point 5.1.5 (h) of the OCR A-level biology A specification and therefore covers the gross structure of the human brain and the function of the cerebrum, cerebellum, medulla oblongata, hypothalamus and the pituitary gland.
The lesson begins with a knowledge recall challenge, where the students have to complete the diagram showing the organisation of the nervous system, as covered in the previous lesson. This reminds them that the brain is part of the CNS and also reintroduces the autonomic nervous system which will be useful when describing the medulla oblongata. As this is an extensive lesson covering a lot of detail, it has been planned to contain 5 quiz rounds as part of a competition which will help to maintain engagement whilst checking on their recall and understanding of content. There are also multiple understanding and prior knowledge checks which allow the students to assess their progress against the current topic and to make links to previously covered content. All answers to these knowledge checks are embedded into the PowerPoint.
The lesson describes the structure of the cerebrum as two hemispheres and then considers the localisation of function of the 4 lobes of the cerebral cortex. It moves onto the cerebellum, focusing on its role of perfecting and coordinating movement, and explains how this is achieved through neural connections with the cerebrum. The control of heart rate by the medulla oblongata is described before the lesson concludes with an exploration of the connections between the hypothalamus and the two lobes of the pituitary gland, specifically in the mechanisms of osmoregulation and thermoregulation.
Two of the worksheets have been modified to allow students of different understanding levels to access the work.
It is likely that this lesson will take between 2 - 3 hours of teaching time, but sections can be edited and removed if the teacher doesn’t want to look at a particular structure in that detail at this stage of study.