Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1214k+Views

2021k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
OCR GCSE Combined Science Paper 3 REVISION (Chemistry topics C1-C3)
GJHeducationGJHeducation

OCR GCSE Combined Science Paper 3 REVISION (Chemistry topics C1-C3)

(2)
This is a detailed and engaging lesson presentation (59 slides) that combines exam questions and progress checks along with quiz competition rounds to enable students to assess their understanding of the specification content within topics C1 - 3 of the OCR GCSE Combined Science Gateway A 9 - 1 as can be assessed in Paper 3. All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained. The revision rounds in the competition include “The need to BALANCE”, “Number crazy” and “React to the REACTION”. This lesson has been designed for GCSE students.
Edexcel GCSE Biology Topic 1 REVISION (Key concepts in Biology)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 1 REVISION (Key concepts in Biology)

(2)
This is an engaging and fully-resourced revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Key concepts in Biology) of the Edexcel GCSE Biology 9-1 specification. The specification points that are covered in this revision lesson include: Explain how the sub-cellular structures of eukaryotic and prokaryotic cells are related to their functions Describe how specialised cells are adapted to their function Know that changes in microscope technology, including electron microscopy, have enabled us to see cell structures and organelles with more clarity and detail than in the past Demonstrate an understanding of the relationship between quantitative units in relation to cells Explain how substances are transported into and out of cells, including by diffusion, osmosis and active transport Core Practical: Investigate osmosis in potatoes Calculate percentage gain and loss of mass in osmosis The students will thoroughly enjoy the range of activities, which include quiz competitions such as “CELL, CELL, CELL” where they have to compete to quickly identify specialised cells from their descriptions whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
Edexcel A-level Biology Topic 7 REVISION (Run for your life)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 7 REVISION (Run for your life)

(2)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within Topic 7 (Run for your life) of the EDEXCEL A-level Biology specification. The topics tested within this lesson include: The sliding filament theory Aerobic respiration Lactate and anaerobic respiration The cardiac cycle How heart rate is increased Structure of a muscle fibre Homeostasis Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Edexcel GCSE Biology REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Biology REVISION LESSONS

9 Resources
This bundle of 9 revision lessons covers the specification content in all of the topics of the Pearson Edexcel GCSE Biology 9-1 specification. Topic 1: Key concepts in Biology Topic 2: Cells and control Topic 3: Genetics Topic 4: Natural selection and modification Topic 5: Health, disease and the development of medicines Topic 6: Plant structures and functions Topic 7: Animal coordination, control and homeostasis Topic 8: Exchange and transport in animals Topic 9: Ecosystems and material cycles All of the lessons have been written to include a range of activities to engage the students whilst enabling them to assess and evaluate their content knowledge so that they recognise those areas which will need further attention prior to the exams.
Edexcel GCSE Biology Topic 5 REVISION (Health, disease and the development of medicines)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 5 REVISION (Health, disease and the development of medicines)

(2)
This is a fully-resourced REVISION lesson that consists of a detailed and engaging PowerPoint (86 slides) and associated worksheets that challenge the students on their knowledge of the content of Topic 5 (Health, disease and the development of medicines) of the Edexcel GCSE Biology specification. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to include as much which of the content from topic 5, but the following sub-topics have been given particular attention: Identification of bacterial, fungal and viral diseases in animals and plants The treatment of bacterial infections The reduction and prevention of the spread of pathogens The body’s response to immunisation The physical defences of humans and plants The risk factors of CHD and possible treatments BMI The production and use of monoclonal antibodies This lesson can be used at numerous points over the duration of the course, as an end of topic revision aid, in the lead up to the mocks or in the lead up to the actual GCSE exams.
GPP, NPP & N (AQA A-level Biology)
GJHeducationGJHeducation

GPP, NPP & N (AQA A-level Biology)

(4)
This fully-resourced lesson explains the meaning of gross and net primary production and net production and describes how they are calculated. The PowerPoint and accompanying resources are part of the second lesson in a series of 3 lessons which have been designed to cover the detail in point 5.3 of the AQA A-level Biology specification. Due to the fact that the productivity of plants is dependent on photosynthesis, a series of exam-style questions have been written into the lesson which challenge the students to explain how the structure of the leaf as well as the light-dependent and light-independent reactions are linked to GPP. All of the exam questions have displayed mark schemes which are included in the PowerPoint to allow students to immediately assess their understanding. A number of quick quiz competitions as well as guided discussion points are used to introduce the formulae to calculate NPP and N and to recognise the meaning of the components. Once again, this is immediately followed by the opportunity to apply their understanding to selected questions. As well as linking to photosynthesis from earlier in topic 5, this lesson has been specifically planned to challenge students on their understanding of ecosystem terminology from the previous lesson as well as preparing them for the next lesson on the efficiency of energy transfer
Naming COMPOUNDS
GJHeducationGJHeducation

Naming COMPOUNDS

(4)
This is a fully-resourced lesson which is designed for GCSE students and explores the topic of compounds, specifically focusing on naming these chemicals based upon the elements within them and from their chemical formula. The lesson includes an engaging lesson presentation (46 slides) and a worksheet containing three tasks for the lesson. The lesson begins with some simple multiple choice questions to check that students can spot the chemical symbol and definition of an element, but more importantly pick out the formula for a compound. Time is taken to go through the explanation of why substances are elements or compounds and specific examples given. A quick understanding check, in the form of a competition called “To COM or NOT TO COM”,is used to check that students can identify elements or compounds from a name or given formula. The remainder of the lesson focuses on naming compounds. Students are challenged to spot a pattern when presented with the names of two compounds, which contain 2 elements only. For both compounds that contain 2 elements or 3 or more, the rules to naming are introduced before examples are shown so that students can visualise how to construct their answer. They are then given an opportunity to apply this to a number of questions in the set tasks. The last part of the lesson moves this forward by looking at how these same rules can be applied when the chemical formula of a compound is given and this is related to another topic as they are challenged to write a word equation containing a range of compounds when presented with the symbol equation. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding. Although this is written for GCSE students, it is perfectly suitable for use with younger students who are learning about elements, compounds and mixtures and the teacher wants to push them along.
AQA GCSE Physics EQUATIONS REVISION
GJHeducationGJHeducation

AQA GCSE Physics EQUATIONS REVISION

(4)
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 23 equations which they have to know for the AQA GCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 13 exam-style questions which challenge 12 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 11. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress. This lesson has been designed to tie in with the other 8 uploaded revision lessons which cover the content of the 8 topics on the AQA GCSE Physics specification
The Collision Theory
GJHeducationGJHeducation

The Collision Theory

(9)
A concise lesson presentation (20 slides) that looks at how the collision theory is related to the rate of reaction. This is a short lesson that would be taught at the beginning of the topic that looks at the rate of reaction and the factors that affect the rate. Students are challenged with a quick competition that gets them to recognise keywords which are involved in the collision theory. Some time is then taken to focus on "activation energy" and how this is shown on a reaction profile. Finally, students will use their keywords to form a clear definition for the collision theory which includes its link to the rate of reaction so this can be used in the upcoming lessons This lesson has ultimately been designed for GCSE students but can be used with all age groups as an introduction to the topic
Group 7:  The halogens
GJHeducationGJHeducation

Group 7: The halogens

(7)
This is a fully-resourced lesson about group 7 of the Periodic Table, the halogens, which includes a lesson presentation (34 slides) and a differentiated worksheet. The lesson begins by challenging students to recognise and explain why the electronic structure of group 1 and group 7 means that they react together easily. As the lesson progresses, students will learn more and more properties about the halogens and key terms such as diatomic are used throughout so that students become accustomed to these. Moving forwards, students will carry out a series of displacement reactions so that they can recognise that the reactivity of these elements decreases as they go down the group. Students are challeged to explain this with reference to electron configuration and a differentiated worksheet will help those who need assistance to access this work. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is suitable for younger students who might be carrying out a project on the Periodic Table
Surface area to volume ratio
GJHeducationGJHeducation

Surface area to volume ratio

(16)
An engaging lesson presentation (16 slides) which looks at the surface area to volume ratio and ensures that students can explain why this factor is so important to the organisation of living organisms. This is a topic which is generally poorly misunderstood by students and therefore time has been taken to design an engaging lesson which highlights the key points in order to encourage greater understanding. The lesson begins by showing students the dimensions of a cube and two answers and challenges them to work out what the questions were that produced these answers. Students are shown how to calculate the surface area and the volume of an object before it is explained how this can then be turned into a ratio. Time is taken at this point to ensure that students can apply this new-found knowledge as they have to work out which of the three organisms in the “SA: V OLYMPICS” would stand aloft the podium. Students are given the opportunity to draw conclusions from this task so that they can recognise that the larger the organism, the lower the surface area to volume ratio. The lesson finishes by explaining how larger organisms, like humans, have adapted in order to increase the surface area at important exchange surfaces in their bodies. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but is perfectly suitable for A-level students who want to look at this topic from a basic level
Chromatography
GJHeducationGJHeducation

Chromatography

(11)
A detailed, engaging and informative lesson presentation (50 slides) and accompanying worksheets that looks at the commonly misunderstood topic of chromatography. This lesson goes through paper, thin-layer and gas chromatography so that students can analyse and interpret the results that would be found on a chromatogram. The lesson begins by challenging the students to recall details of this separation method when they met it at KS3. Students will meet the two chemical phases, mobile and stationary, and begin to understand that this method relies on the distribution of substances between these two phases. Students will meet the calculation for retention factor and be shown how to tackle questions on this topic before trying themselves. Time is taken to go over the details of gas chromatography, in a step by step guide format, as this is a poorly understood topic. There are progress checks throughout the lesson, which include mark schemes and detailed explanations, so that students can assess their understanding and address any misconceptions that could arise. This lesson has been written for GCSE students but could be used with A-level students
Maths in AQA GCSE Chemistry REVISION
GJHeducationGJHeducation

Maths in AQA GCSE Chemistry REVISION

(3)
A fully-resourced lesson which prepares students for the range of mathematical-based questions that they could encounter on the two AQA GCSE Chemistry papers. The lesson contains a wide range of activities which include exam-style questions with markschemes embedded within the PowerPoint to enable the students to assess their current understanding. There are also 8 quiz competition rounds interspersed throughout the lesson to maintain engagement and motivation. The mathematical skills covered in this lesson include: Calculating the number of sub-atomic particles in atoms and ions Writing chemical formulae for ionic compounds Identifying isotopes Using Avogadro’s constant to calculate the number of particles Calculating the relative formula mass Calculating amount in moles using the mass and the relative formula mass Balancing chemical symbol equations Calculating reacting masses Gas calculations using molar volume Calculating the concentration of an unknown solution Calculating the atom economy and percentage yield Calculating energy changes in reactions Temperature and pressure and the position of equilibrium Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions
MOMENTUM
GJHeducationGJHeducation

MOMENTUM

(3)
A concise lesson presentation (16 slides) and associated worksheet that looks at the motion topic of Momentum and guides students through how to answer these questions. The lesson begins by giving the students the units for momentum and challenging them to use this to work out the other factors involved in the equation. Moving forwards, a number of progress checks are used to see whether the students can apply their new found knowledge. All progress checks have displayed mark schemes. This lesson has been designed for GCSE students and ties in nicely with my other resources, "Conservation of momentum" and "Changes in momentum"
Autosomal Linkage (OCR A-level Biology)
GJHeducationGJHeducation

Autosomal Linkage (OCR A-level Biology)

(3)
This clear and concise lesson explains how the inheritance of two or more genes that have loci on the same autosome demonstrates autosomal linkage. The engaging PowerPoint and associated resource have been designed to cover the part of point 6.1.2 (b[ii]) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the use of phenotypic ratios to identify autosomal linkage. This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be. This lesson has been written to tie in with the other lessons from module 6.1.2 (Patterns of Inheritance)
Homeostasis
GJHeducationGJHeducation

Homeostasis

(7)
A concise lesson presentation (19 slides) and associated worksheet (newspaper articles) that introduces students to the process of homeostasis in the human body and the three main factors (water potential, blood glucose, temperature) that are controlled by this system. The lesson begins by getting the students to work out a code to give them an exemplary definition for homeostasis. A newspaper article is used to get the students to recognise the three factors that are controlled. A quick competition is used to show the students the main parts of any homeostatic control system. This lesson is designed for GCSE students but could be used with both KS3 and A-level as a quick recap
Specific heat capacity
GJHeducationGJHeducation

Specific heat capacity

(13)
A detailed lesson presentation (25 slides) that introduces students to the difficult topic of specific heat capacity. Students are guided through the equation for energy transferred and shown how to rearrange the equation, so they are able to tackle the question, no matter the subject of the question. There are regular opportunities for students to apply their new found knowledge to questions and to assess themselves against the answers. Quick games and competitions are also used to maintain engagement. If you choose to download this lesson, it would be much appreciated if you would take just a few seconds to write a review so I can improve my practice and other teachers can see if this resource is right for them. Thank you in advance.
CIE IGCSE Combined Science Topic C11 REVISION (Air and water)
GJHeducationGJHeducation

CIE IGCSE Combined Science Topic C11 REVISION (Air and water)

(4)
This revision resource contains an engaging PowerPoint (44 slides) and associated worksheets, all of which have been differentiated two ways to allow students of differing abilities to access the work. The range of activities cover the content of Topic C11 (Air and water) of the CIE IGCSE Combined Science specification, for examination in June and November 2020 and 2021. The aim was to cover as much of the content as possible but the following topics have received particular attention: The composition of clean air Changes in atmospheric carbon dioxide levels The formation of carbon dioxide Common air pollutants and their effects on health and structures The treatment of water to make it safe The chemical tests for water A number of quiz competitions are included in the lesson such as “POLLUTE the air…with the answer” where students compete to be the first to identify a common pollutant from the clues. These competitions act to engage them whilst the exam questions and quick tasks will enable them to assess their understanding of the content.
Arteries, arterioles & veins (AQA A-level Biology)
GJHeducationGJHeducation

Arteries, arterioles & veins (AQA A-level Biology)

(2)
This fully-resourced lesson explores the relationship between the structure of arteries, arterioles and veins and their respective functions. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the 6th part of point 3.4.1 of the AQA A-level Biology specification which states that students should be able to describe the structure of these blood vessels in relation to their function. This lesson has been written to build on any prior knowledge from GCSE or earlier in this topic to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, the importance of the arterioles as a transition between the artery and capillary is discussed and students will see how the smooth muscle in the walls of this blood vessel allows for the redistribution of blood during exercise. The final part of the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. It is estimated that it will take about 2 hours of allocated A-level Biology teaching time to cover the detail included in this lesson
Law of conservation of mass (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Law of conservation of mass (Edexcel GCSE Chemistry & Combined Science)

(2)
This lesson explains the law of conservation of mass and applies this law to a closed system and a non-enclosed system. The PowerPoint and accompanying resources have been designed to cover point 1.48 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course. The lesson begins by introducing the law of the conservation of mass. Students will learn that they can expect questions which challenge them to prove that mass is conserved through the use of the relative formula mass. Therefore, the next section of the lesson focuses on the skills associated with this calculation and looks at more different formulae such as those with brackets. Students are given an opportunity to check their skills before trying to prove mass is conserved in three chemical reactions. All questions have displayed mark schemes so that students can assess their understanding. The rest of the lesson looks at instances of when the mass of the reactants does not equal the mass of the products. A practical method for the decomposition of copper carbonate is provided if the teacher wants to use it, so that students can collect results which show this difference in mass. Discussions are encouraged in order to get students to offer explanations as to why the mass of the products is lower. Once the gas has been identified, students are further challenged to consider apparatus that could be used to collect and record the results to again prove conservation