This is very similar to the excellent activity from danielabbott89 - https://www.tes.com/teaching-resource/mean-from-a-frequency-table-amazon-reviews-6323431
However, the products in that resource are now a bit out of date, so I wanted to make a resource that would have a bit more longevity. Students have to work out the average (mean) rating given by Amazon users to various products - the data is real! The data is presented as a frequency table. Solutions are provided (to 2 decimal places).
A good resource to use in a poster-making lesson!
Used with an able Year 10 group as a way to revise factorising into single brackets. Students are given a partially completed multiplication grid with algebra, and must deduce what expressions go in the remaining boxes. As a starting point, look at the 3rd column: by factorising 6x + 8 and 15x + 20, we deduce that (3x + 4) must go at the top of this column. Solutions are provided.
Some questions on Bearings & right-angled Trigonometry that I designed for my Year 11 students.
The worksheet is scaffolded - each question comes in a pair. In the first question, I have drawn the complete diagram for students. In the second question, the diagram has been drawn but not labelled - students must do this for themselves.
Solutions are provided.
This Powerpoint covers the 5 Sampling Techniques covered in Chapter 1 of the Applied Textbook for Edexcel Year 12 / AS Maths, namely:
Simple Random Sampling
Systematic Sampling
Stratified Sampling
Quota Sampling
Opportunity Sampling
To try and make the content a little bit more interesting, I introduce these techniques using Skittles (eating them is a nice treat at the end of the lesson!).
Students are told the value of the top block in each pyramid. They have to create an equation to determine the value of x, by working their way up the pyramid - each block is the sum of the 2 below it.
The first sheet contains only positive terms, but the second sheet introduces negatives. Solutions are provided.
A puzzle to make the topic of dividing in ratio a little bit more interesting, inspired by a similar Don Steward task: https://donsteward.blogspot.com/2014/11/mobile-moments.html
The numbers along the top of the bars tell student what ratio to divide the top number in. For example, on question 4, you should split 42 into the ratio 3:4 and put the answers in the bubbles. They should then split their answer of 24 in the ratio 1:2.
Solutions are provided.
This resource is for students who are confident with Linear and Quadratic Sequences. It covers:
Finding the nth term of a linear sequence
Finding the nth term of a quadratic sequence
Generating sequences
Verifying whether a given number is in the sequence
Finding missing terms in linear sequences
Full answers are provided.
28/09/22: New and improved Powerpoint uploaded!
The lesson starts with a quick recap of square and cube roots which all have integer values.
Students are then asked what the square root of 32 is. It’s not an integer, but we can find an approximate value by determining which 2 integers its value lies. Some examples of how to do this are given (which are fully animated), then there are some basic fluency questions which can be done on mini-whiteboards so you can assess student understanding. There is a slide of questions for students to work on independently in their books.
To make things a little more interesting/challenging, there is also some work on solving basic quadratics provided. Rather than leaving the answers as a surd, I get pupils to give me approximate answers, so that they get some more practice estimating square roots!
Answers to all questions are given, and no printing is required.
Students have to determine the roots, y-intercept and turning point of each of the given quadratic graphs using an algebraic method. The graphs are not drawn accurately, although I’ve tried my best to get them in roughly the correct position.
Solutions are provided.
This worksheet (with 15 questions) guides students through the process of finding the equation of a tangent to a circle. I used this with a class of grade 5/6 Higher students, who I thought would probably struggle with the topic without any support.
I’ve tried to make the worksheet gradually harder as students work their way through the questions - e.g. the y-intercept is mostly an integer, except for the final few questions.
Full solutions are provided.
Students solve quadratic equations by completing the square, giving their answers in both surd form and as decimals. The answers are all jumbled up, and students must match the answers to the correct quadratic equation. There are a couple of quadratics where the coefficient of x is odd, and some knowledge of simplifying surds will be required.
Solutions are provided.
6 questions I designed to stretch the most able in my Year 11 foundation group.
I have provided an editable Powerpoint version of the worksheet, and a pdf which has 2 copies per A4 sheet.
Answers are also provided.
This is similar to a resource already on TES that I really like (https://www.tes.com/teaching-resource/gcse-maths-sequences-search-worksheet-6158880) but I wanted an activity that required more substitution into nth terms rather than pattern-spotting, so this is what I came up with.
Students have to find the 1st, 2nd, 5th, 10th, 50th and 100th terms of sequences using the given nth terms. They cross off all of their answers in the grid above. For ease of marking, there will be 10 numbers left over in the grid after the activity is completed. Students should add these together, and if they’ve made no mistakes, they’ll get a total of 1000. Full solutions are still provided however!
A basic worksheet to help my Year 9s understand that just because 12 parts of a shape are shaded, that doesn’t necessarily mean 12% of the shape is shaded! I got my class to first of all determine the fraction shaded, and then change the denominator to 100 to determine the percentage shaded.
It comes in 2 parts - in the first part, the denominators of the fractions multiply easily up to 100. In the second part, they don’t, e.g. 24/40, so they need to be simplified first.
Solutions are provided.
A basic worksheet that covers all the content on Exact Trigonometric Values required at GCSE level.
It mostly contains basic SOH CAH TOA questions, but there are a couple of multi-step problems and a few questions that involve manipulating surds.
Solutions provided.
A short matching task on the Area of a Circle in terms of Pi. Students calculate the area of each circle, and cross off the answer in the grid at the bottom. It will probably take your students only 5 minutes to complete!
Task is available as a pdf or as a powerpoint, in case you want to make any changes.
In each block of the maze, students are given a value and a percentage they should increase it by. An answer is given (the large number in each block). Students try to find a way through the maze, left to right, that only goes through correct answers (moving diagonally is not allowed!).
Solutions provided.
Suitable for higher-attaining GCSE students who are revising Index Laws. Logarithms are not needed to solve these equations - they can all be solved by making the base the same on both sides, and then setting the powers equal to each other. Solutions are provided.
A division worksheet I made to help my Year 7s practise giving their answers as decimals, instead of just writing the remainder.
Full solutions provided, and I’ve also provided the PowerPoint file I used to create this in case you want to make any edits.
I designed this to be similar to the “Settler” worksheets you may have seen on Mathsbox, which I use a lot! Students complete each question, then cross their answer off in the Answer Grid (if they can’t find their answer, they’ve made a mistake!). Once all 20 questions have been completed, there will be 5 numbers in the Answer Grid that haven’t been crossed off. Add these 5 numbers up to get the final answer.