524Uploads
213k+Views
114k+Downloads
Design, engineering and technology
Sew your own Christmas stocking
In this fun Christmas craft project for secondary school students, learners will design and sew their own Christmas stocking.
Our free resource is designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology and Engineering.
The free activity sheet and instruction presentation are available to download below.
Oh ho ho, and please do share your final creations with us @IETeducation! #SantaLovesSTEM
Common uses of Information Technology poster
Primary classroom poster exploring how information technology is used outside school.
Download the single poster or order a full set of posters for free form the IET Education website.
Four experiments with magnets
Super simple fun science experiments
These four fun science experiments using magnets are quick and easy to set up, suitable for learning at home or school. Your students will measure the effects of magnetism as magnets pass through tubes made of different materials; create a visual demonstration of Chaos theory with magnets affecting the swing of a pendulum; feel “attract” and “repel” forces of magnetism by placing magnets on either side of their hand, and use the magnetic field to make an object move as if it is alive.
These four practical experiments demonstrate various different scientific principles related to magnets and magnetism, including:
electromagnetic induction
magnetic fields
chaos theory.
Tools/resources required
Projector/Whiteboard
Magnet kit
2 neodymium magnets
plastic radiator pipe sleeves
copper plumbing pipe
Sticky tape
Blu-tack
Steel nut
Cotton thread
Chairs
This activity could be used as a starter or main activity to introduce the effects of magnetism and magnetic fields, or as one of several activities within a wider scheme of learning focusing on different types of forces. These experiments could also be used as an introduction to power generation or the potential uses of magnets in Design and Technology and Engineering projects.
This activity sheet was developed with the support and participation of the School of Engineering at Cardiff University.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Develop a travel information system
Develop a programmable information system for users of the London Underground
The London Underground is one of the busiest public transport systems in the world. It is used for over 1.2 billion journeys a year. Passengers need up to date information when using it so that they can plan their journeys well.
This could be used as a main lesson activity with ‘Transport displays designed for users’ as the starter. It is an ideal exercise for learners to develop programming skills, make use of programmable components and embed intelligence into a product design.
In this engaging activity students will use the BBC micro:bit to create a prototype for a travel information system that could be used by passengers on the underground. The system must provide both service (how well the network is running) and timetable information when different buttons are pressed.
When writing the program those who have not done programming before may benefit from writing, experimenting with and downloading the example program shown on the Teacher PowerPoint (also provided as a PDF handout). They can use this as a base for their own program. This is provided as JavaScript Blocks Editor Powered by Microsoft MakeCode (microbit-transport-jsb.hex) and Python Editor (transport.py) code. Teachers will need to decide which programming editor is the most suitable for their learners. Code Kingdom can also be used.
This activity will take approximately 60-120 minutes depending on the ability and prior experience of learners.
Tools/resources required
Projector/Whiteboard
BBC micro:bit system and online programming software
Internet (to access programming software)
Suitable sensor inputs and sound outputs
The engineering context
Transport is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at KS3.
It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners.
Suggested learning outcomes
By the end of this activity students will understand a block systems diagram of an information system, they will be able to successfully program the BBC micro:bit so that the system meets the design criteria and they will be able to understand and apply the use of a moving text on an LED display.
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Design an information system
Design an information display system for disabled people
The importance of smart sensors in our daily routines is growing significantly. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future.
This engaging and thought-provoking activity introduces secondary school students to methods of looking at specific problems. To use the research and knowledge gained to find solutions to a problem, and to allow students to explore these solutions, however improbable they may seem.
Students should design an information display system for use in their school which can be used by those with disabilities. For an example of a system diagram use the ‘Systems diagram’ handout.
Students will communicate their solutions using annotated sketches. They should try and identify the Inputs and Outputs that are necessary.
Furnish the students with both information sheets, and explain that any solution should be considered, no matter how crazy or improbable it seems. They will need to produce annotated sketches of a number of solutions – emphasise that these need to be clear so that others can understand. For each solution, a block diagram should be produced showing the Input-Process-Output for the design.
How long will this activity take?
This activity will take approximately 45 minutes to complete.
Tools/resources required
Woollen gloves
Blindfolds
Ear defenders
Graphical equipment
The engineering context
Engineers play a crucial role in the development and implementation of smart sensors in various industries. Smart sensors are sensors that can process and analyse data, allowing them to make decisions without human intervention. Engineers are responsible for designing and integrating these sensors into systems, ensuring that they function correctly and provide accurate and reliable data. They also play a vital role in the development of innovative ways to use smart sensors to improve various processes, including healthcare, manufacturing, transportation, and many others. With the increasing demand for smarter and more efficient systems, engineers will continue to play a critical role in the advancement of smart sensor technology.
Suggested learning outcomes
By the end of this activity students will be able to identify problems for a specific task, use various methods to research a problem and explore solutions.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Electrical and electronic symbols poster
Secondary classroom poster showing the common electrical and electronic symbols.
Download the single poster or order a full set of posters for free from the IET Education website.
Investigate the James Webb Space Telescope
Examine the materials used on the James Webb Space Telescope in this free activity.
In this engaging STEM activity for KS3, we will delve into the groundbreaking technologies used in the construction of the James Webb Space Telescope (JWST), one of humanity’s most impressive space observatories.
As budding engineers, students will have the unique opportunity to investigate the engineered materials that make the JWST a marvel of modern engineering. Get ready to uncover the secrets behind the telescope’s incredible capabilities, discover the innovative materials that withstand the harsh conditions of space, and gain a deeper understanding of how scientific ingenuity allows us to peer into the universe’s farthest reaches.
Activity: Investigate the James Webb Space Telescope
In this activity, students will investigate an engineered material and share the results of their research with the class. This unit has a predominantly design & technology, and engineering focus, although it could be used in science. It could also be used as a main lesson or a research activity to develop an understanding of materials and their properties.
What is the James Webb Space Telescope?
The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy.
Suggested learning outcomes
By the end of this activity, students will be able to understand that materials can be selected for specific characteristics and purposes, they will be able to identify the properties of materials required for a particular function, and they will be able to explore a range of engineered materials, understanding why they are used.
The engineering context
The materials students will examine are used in the JWST or aerospace applications.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Materials for design
Choosing materials for a new design
It is essential that products used in our everyday lives are fit for purpose. To design a product which will be useful to the customer it is important to understand how different products function and why different materials and components are suitable for different applications.
With this in mind, students will dismantle an engineering product to help them better understand its construction and function. They will then use this experience to create a test that will help in choosing which materials are fit for purpose when designing a new product.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in design and technology (DT). The lesson accompanies our Reverse engineering activity, which should ideally be completed before this lesson.
Activity: Choosing materials for a new design
In this activity students will be given a pair of headphones to dismantle (this must be done carefully, as the headphones will need reassembling afterwards!).
Using our Product investigation booklet, students will conduct a product analysis to investigate its construction. They will be asked to create a test that will help manufactures determine if different materials are fit for purpose to aid choosing materials for new designs.
The engineering context
Engineers may choose to review older products, or competitor products, in order to help them choose materials for certain design or engineering projects. These materials may be the same as what has already been used in what they’ve examined, or the examination may lead them towards producing superior materials.
Suggested learning outcomes
At the end of this lesson students will be able to effectively dismantle and investigate an engineered product to determine how it was made along with its function/purpose.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation.
Transport displays designed for users
Investigate what information travellers on the London Underground need
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
The London Underground is one of the busiest public transport systems in the world. It is used for over 1.2 billion journeys a year. Passengers need up to date information when using it so that they can plan their journeys well.
In this unit, learners will use the BBC micro:bit to develop a prototype for a programmable information system for users of the London Underground.
Activity info, teachers’ notes and curriculum links
In this activity, learners will investigate the needs of users of the London Underground, the information that they require and how programmable systems may help to provide solutions.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Mobile phones and health
Investigate the potential effects of mobile phones on our health
The ‘Time for a game’ scheme of work provides an electronics systems context for students to explore infrared technologies.
Activity info, teachers’ notes and curriculum links
An engaging activity in which students will investigate the potential effects to health of the use of mobile phones and their transmitters, which use radio waves and microwaves to transmit information.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design and make a prayer mat for Ramadan
Using our KS2 lesson plan and template, learners will design and make their own prayer mat for Ramadan using string, wool and colouring pencils while nurturing an understanding of the religious festival of Ramadan
In 2024 Ramadan starts on Sunday 10 March and ends on Monday 8 April. It is estimated that globally 1.6 billion Muslims will take part in Ramadan and will fast from sunrise to sunset for one lunar month.
In this lesson activity learners will look at what Ramadan is, what happens during Ramadan and what is important to Muslims during Ramadan. They will look at existing prayer mats and design a prayer mat using a provided template suitable for the KS2 level.
We’ve created this design activity to support the teaching of key topics within design & technology (D&T), religious studies and art.
This could be used as a one-off lesson activity to develop designing and sketching skills or an understanding of Ramadan. Alternatively, it could be used as a part of a wider scheme of work to develop designing and modelling skills in design & technology and engineering.
Tools/supplies needed:
Paper and card
Drawing implements: colouring pencils or pens, pencils and rulers
Scissors
Optional, if available – examples of actual prayer mats
For extension activities: glue sticks, string, wool, selection of materials
The Engineering context
All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients.
Suggested learning outcomes
It is important for learners to understand all types of religious festivals as part of their religious education. This resource combines religious education with art and design and technology with the aim that the learners will be able to generate, develop, model and communicate their ideas through discussion, annotated sketches and pattern pieces.
Specifically, children will learn the main considerations and features for designing a prayer mat for Ramadan and be able to design a prayer mat that reflects Ramadan using shapes and patterns.
Download our activity sheet and other teaching resources for free
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
How to draw a plan view in maths
Producing a plan view will help children to develop drawing skills, while also introducing concepts such as dimensions, proportion, and scale. All through our fun, hand-on maths activity!
Different types of drawing are used to communicate different types of information. Plan views see a section of an object as projected on a horizontal plane. In effect, a plan view is a 2D section drawing viewed from the top – this is different from a top view, which would see all of the features looking down from above. In the case of a room, for example, a plan view may show tabletops, chairs, doors etc., whereas a top view would also show the legs of the tables, light fittings etc.
Plan views are widely used to show rooms or buildings from above. They may include measurements, furniture, appliances, or anything else necessary to the purpose of the plan. Plan views may be used to see how furniture will fit in a room, for example when designing a new kitchen, to show the builders the layout of a new building, or on estate agent’s literature to give potential buyers an indication of what a house is like.
The lesson will help learners pick up an understanding of the practical uses of these drawings, from planning the layout of a room to presenting quite complex information about buildings.
This is one of a set of resources developed to support the teaching of the primary national curriculum, particularly key stage two (KS2). It has been designed to support the delivery of key topics within maths and design and technology (DT). This could be used as a one-off activity, an extension to maths learning on scale, or linked to other school activities, such as preparing a map for parents evening.
The engineering context
Designers, engineers, and architects need to be able to communicate the details and features of rooms or products to other engineers, manufacturers, and users. This can include sizes, assembly instructions and layouts. Drawings are typically one of the main methods used for explaining this information – they can be found in every area of engineering and manufacturing.
Suggested learning outcomes
Children will learn about the purpose of a plan view drawing and be able to create one for themselves. They will also learn how to use dimensions and scale when drawing.
Download our activity sheet and related teaching resources
All activity worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
And please do share your classroom learning highlights with us @IETeducation.
Display stand - Create design ideas for a display stand for your information system
Create design ideas for a display stand for your information system
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
The London Underground is one of the busiest public transport systems in the world. It is used for over 1.2 billion journeys a year. Passengers need up to date information when using it so that they can plan their journeys well.
In this unit, learners will use the BBC micro:bit to develop a prototype for a programmable information system for users of the London Underground.
Activity info, teachers’ notes and curriculum links
In this activity, learners will design and develop ideas for a stand for the transport information display.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Make a homemade musical instrument
Learn how to make a homemade single stringed musical instrument in this fun STEM activity for kids
This fun STEM activity for kids will show you how to make a homemade musical instrument from card and can be done at home or at school!
This is one of a set of free resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on the construction, investigation and testing of a single stringed instrument.
In this activity learners will construct a card model of a single stringed instrument. They will test how it works, demonstrating how the tension of the string affects the pitch of the notes produced.
This could be used as a one-off activity or as part of a wider unit of work focusing on how sound is produced and heard by the human ear. It could also be used to develop modelling and prototyping skills.
Download our activity sheet below for a step-by-step guide on how to construct your homemade instrument.
As an optional extension students could evaluate the model they have built and suggest improvements that could be made to it. They could also make a manufactured prototype of a single stringed instrument using woods, metals and/or plastics. Alternatively, they could investigate and research the use of pivots and how these work in mechanical systems.
This activity will take approximately 40 – 60 minutes.
Tools/resources required
Parts and materials:
Pieces of card
Hollow card boxes
Paper fasteners
Elastic bands
Tools and equipment:
Scissors
Hole punches
The engineering context
Engineers need to be able to understand how sound is produced and heard by the human ear. This knowledge could be used when designing musical instruments or products that produce different sounds, such as games for children.
Suggested learning outcomes
By the end of this activity students will have an understanding of how sound is produced from a stringed instrument. They will also have an understanding of how changing the tightness/tension of a string alters the pitch of the notes produced. Finally, they will be able to construct and test a model of a single stringed instrument.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
https://education.theiet.org/primary/teaching-resources/make-a-homemade-musical-instrument/
Design a model car and wheel axle
Design an experiment to test how long it takes a vehicle to move down a slope
In this series of activities, pupils will learn about nets and wheels and axles. They will combine these technologies to make the base and body for a vehicle made from card, finishing by evaluating the performance of the assembled vehicle.
This activity evaluates the performance of the vehicle previously manufactured by the pupils. It involves recording the time taken by each vehicle to go down a slope. This can be converted into the speed of the vehicle. It could be used at Key Stage 1 or 2 to develop an understanding of the use of testing and numeracy skills.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation
Maths for engineering poster
Secondary classroom poster where your students can find out about the equations and formulae needed for engineering.
Download the single poster or order a full set of posters for free from the IET Education website.
Global surgery challenge
Investigate and understand the technology that is required for remote surgery
A session focused on Internet research and presentation skills. Students work in teams to investigate the technology that is required for remote surgery and discuss the advantages, disadvantages and ethical issues of such procedures.
Students are given the example of a patient who, after suffering a series of heart attacks is about to undergo heart surgery in a hospital where a new pacemaker will be inserted using remote surgery. They are responsible for reassuring the patient ‘Luigi’ about the procedure and the aftercare.
Download the free activity sheet!
And please do share your classroom learning highlights with us @IETeducation
Make a Robinson Anemometer
Making a device to measure wind speed
In this science project, students will construct a Robinson Anemometer using common household materials. Once built, students can use it to measure wind speed either inside with domestic items or outside with the natural environment.
This activity can serve as a stand-alone project or as a component of a broader unit on weather or measurement. It is intended for upper Key Stage 2 learners (years 5 and 6).
This resource is part of a collection of free STEM resources created to aid in the teaching of the primary national curriculum, especially in the areas of science and design and technology. The purpose of this activity is to aid in teaching key concepts through the construction of a homemade anemometer.
Parts and components required:
Polystyrene balls, 25 - 40 mm diameter, 1 per anemometer
Wood/bamboo skewers, 3 per anemometer
Putty (such as Blutack or Whitetak) OR modelling clay (such as clay, Plasticine or Playdough).
EITHER 6 paper cups OR 4 paper cups and a plastic water bottle with a sports cap
Sticky tape
Tools and equipment required:
Fans, hair-dryers or other sources of moving air
Stop watches
Commercial anemometer (for extension activity)
The Robinson Anemometer
The Robinson Anemometer is a type of cup anemometer, an instrument used for measuring wind speed. It was invented by John Thomas Romney Robinson in 1846 and is named after him. The Robinson Anemometer consists of four hemispherical cups mounted at the end of horizontal arms, which are attached to a vertical shaft. As the cups rotate due to the force of the wind, the speed of the wind can be calculated based on the rate of rotation. The Robinson Anemometer is still widely used today and is considered one of the most accurate and reliable types of anemometers.
The engineering context
Engineers need to be able to measure the forces that will act on the things they need to design. They need to understand how these measurements are made so that they can be confident that their designs will meet the requirements in practical situations.
Suggested learning outcomes
By the end of this activity students will have an understanding of what is meant by wind, they will be able to construct a simple mechanical device and they will be able to understand that the linear movement of air can be measured by the rotation of an anemometer.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Solar power in space
Investigate the photovoltaic effect and manufacture a simple circuit in this free activity.
In this engaging task, students will explore the photovoltaic effect by creating a simple circuit and incorporating it into a product—specifically, a solar-powered version of the well-known jitterbug project called a “solarbug”
This activity can serve as a targeted hands-on exercise for subjects like Electronics or Product Design under the umbrella of Design & Technology. Alternatively, it could be included as a component of a study on the application of solar energy in the field of science.
Activity: Solar power in space
Photovoltaic cells, also known as solar cells, are used as a power source by the James Webb Space Telescope (JWST).
This activity is one of a set of STEM resources developed with the theme of the James Webb Space Telescope to support the teaching of Science, Design & Technology, Engineering and Mathematics.
The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of increasingly complex electronic circuits.
What is the James Webb Space Telescope?
The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy.
The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come.
Suggested learning outcomes
By the end of this activity, students will understand how photovoltaic cells work, how they can be used in a circuit and how to make a simple circuit.
The engineering context
The James Webb Space Telescope uses photovoltaic cells as its power source.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Build a car that moves
Learn how to make the base of a moving vehicle from card
Build a car with axles that moves! Budding inventors engineer the base and body for a model car made from card with wheels and axles. This is a fun practical activity for participants to make a simple 3D shape from a 2D net. The KS1 DT activity then introduces axles and wheels to enable the car to move.
Activity info, teachers’ notes and curriculum links
In this activity, pupils will make the base of a moving vehicle to understand how cars are designed and how axles work to allow cars to move.
Download the free resources!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Tools/resources required
Copies of the car base handout, printed on card, 1 per pupil (plus spares)
Axles, 2 per pupil – for example, wooden skewers
Plastic tubing – this can be short sections cut from drinking straws
Wheels, 4 per pupil
Scissors
Glue sticks
Optional:
Sticky tape or double-sided sticky tape
Hole punches (ideally single hole punches)
Coloured pencils
Pre-made model of the base, for demonstration (this could be made large size, for example by printing out on A3 card)
Download the activity sheets for free!
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales
And please do share your classroom learning highlights with us @IETeducation