Hero image

524Uploads

213k+Views

114k+Downloads

Renewable energy debate
IETEducationIETEducation

Renewable energy debate

(3)
Structured class debate on the location of a new wind farm There is much debate about the issues created by carbon emissions and how renewable energy sources can help resolve these challenges. Most people agree that renewable energy is a good thing, but many oppose to having wind turbines built near their neighbourhood. In this role-play activity, participants take on different roles to debate a proposed wind farm. In pairs, students discuss whether their character would be in favour of the proposed wind farm and prepare a two-minute talk to share their case with the group. Afterwards, divide the larger groups into ‘for’ and ‘against’ and bring together all the individual statements to form a strong, coherent case. Four people are chosen to give two reasons to support their argument. Activity info, teachers’ notes and curriculum links This activity has been written with a strong science bias. However, it can easily be taught in design and technology with either a systems and control approach or from a ‘sustainability’ angle, looking at the topic of wind farms and the future of energy production. The ‘sustainability’ perspective will provide an activity that could involve design and technology, geography and citizenship. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Science behind the materials
IETEducationIETEducation

Science behind the materials

(1)
Explore the properties of solids, liquids and gases In this unit, students will develop their understanding of the properties of the three states of matter. They will have the opportunity to experiment with a range of different substances that do not fit neatly into the traditional states of matter model. Activity info, teachers’ notes and curriculum links An engaging activity where students will explore materials to develop an understanding of why they behave the way they do. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Build a popsicle stick catapult
IETEducationIETEducation

Build a popsicle stick catapult

(1)
Develop an understanding of levers and build a popsicle stick catapult from craft sticks with this free STEM lesson plan. This is an exciting and engaging way to learn about physics and engineering. With the right materials, build a simple yet effective catapult capable of launching chocolate eggs up into the air! This lesson plan is perfect for KS3 students and can be used as a fun one-off main activity to introduce levers. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design & Technology, Mathematics and Science. This resource involves making a simple catapult which works as a lever to propel a chocolate or mini egg. This activity will take approximately 50 – 70 minutes to complete. Also included is a fun crossword using words from the activity to promote sticking learning. Tools/resources required Craft sticks (at least 7 per learner) Small elastic bands (at least 7 per learner, plus spares) A teaspoon (metal or plastic) Chocolate mini eggs (or similar) For the extension activity: Pencils (or similar, such as dowel rods) Elastic bands The engineering context Levers are one of the simplest machines and are used in many applications. These include pliers, scissors, brake pedals and wheels and axles. The principles of levers are also used in many applications when designing sports equipment, such as cricket bats, golf clubs and hockey sticks. Suggested learning outcomes After completing this Easter themed engineering resource students will be able to describe the three classes of lever and they will be able to make a structure. Download the free Build a popsicle stick catapult activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Sound velocity
IETEducationIETEducation

Sound velocity

(1)
How fast does sound travel? What is sound velocity? Find out about transverse and longitudinal waves in our free, downloadable KS4 maths worksheet. From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. Activity info, teachers’ notes and curriculum links This engaging activity allows students to investigate the velocity of sound. Two methods, a direct method and an ICT based method, are proposed. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Materials for a prosthetic foot
IETEducationIETEducation

Materials for a prosthetic foot

(1)
Analyse data to find the best material for a prosthetic foot The development of new materials is having a huge impact on all of our lives. This engineering activity for kids encourages students to look at a variety of materials and find out which would be the best for ankle and foot prosthetics. Different materials will perform in a variety of different ways, and it is through the analysis of the materials that students will be able to work out which would be the best for a prosthetic foot. This fun STEM activity is designed as a main lesson exercise for secondary school students. Learners will carry out some data manipulation to find the best material from which to make a prosthetic foot. The activity offers strong opportunities for cross-curricular work with Mathematics. The class will be split into teams. Students will work as teams of engineering materials consultants and have to find the best material from which to make a prosthetic foot. Using the related handouts, which can be found below, students will plot graphs of stress against strain for seven different materials and calculate the gradient in order to find the stiffness for each material. Based on this information, students should select which of the seven materials is the most suitable for the construction of the foot. Students will present their recommendations to the rest of the class and the other teams will comment on their recommendations. What you will need: Graph paper Pen/pencil The engineering context The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts. The resources within this, and the related activities, encourage students to investigate the properties of smart materials and carry out some data manipulation. Students will also explore the possible moral and ethical issues associated with people potentially choosing to replace healthy body parts with artificial prostheses because they offer higher performance. By the end of this activity students will be able to make the link between material properties and material usage. They will be able to understand how smart materials are used in a real life context and they will be able to use and manipulate material-related data.
Input, process and output
IETEducationIETEducation

Input, process and output

(2)
In this activity students will make a simple infrared circuit to develop their understanding of this technology. Our “Time for a Game” worksheet introduces students to infrared technologies, using the technology behind the Nintendo Wii as a real-life example. Through building and testing an infrared circuit, students will learn to identify which components are inputs and outputs, a critical skill that deepens their understanding of how electronic systems function and enables them to design more complex circuits in the future. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). This can be effectively taught within systems and control, or electronic products approaches within design and technology, or through science with an emphasis on energy, electricity and forces. Activity: Build and test an infrared circuit Students will work in pairs to construct the circuit outlined in the “Time for a Game” worksheet. After building their circuits, they will test their functionality under different conditions and answer key questions about their design. This hands-on approach will allow students to identify the input and output components of the circuit, understand its performance in various lighting conditions, and consider how these factors would influence the design of a Wii controller. The engineering context By building and testing an infrared circuit, students will gain a practical understanding of the engineering process, from conceptualization to testing. Furthermore, this activity will inspire students to consider a career in engineering, as they experience firsthand the creativity, critical thinking, and problem-solving that this field entails. Suggested learning outcomes Students will develop a working prototype of an electronic circuit, gaining practical experience in the process. They will learn to identify inputs and outputs in a circuit and test its performance under different conditions. Furthermore, they will have the opportunity to apply their findings to hypothetical design situations, promoting critical thinking and problem-solving skills. This activity will teach students the ability to explain how their research findings could affect their design ideas, enhancing their communication skills and technological literacy. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Structural engineering
IETEducationIETEducation

Structural engineering

(0)
In this activity students will use case studies to investigate how architectural and building issues can be resolved. It can accompany our Structural engineering starter and How to design a spaghetti roof structure activities as part of a series of activities that explores structural engineering. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within design and technology (D&T) and engineering. Activity: Exploring how architectural and building issues can be resolved through real-life case studies Students will view the design of the O2 arena by watching our Sound design video. They will also investigate the design of Stanstead Airport by viewing our structural engineering presentation. They will look specifically at the requirements of the buildings and the constraints in terms of structural design. They will also explore the design solutions used to overcome potential issues. This will form the stimulus for students to investigate structures in detail. The students will then be asked to explore possible solutions to a given structural design challenges. Download our activity overview for a detailed lesson plan on structural engineering for free! The engineering context Iconic structures don’t just happen by accident. When designing large buildings, there will often be challenges that need problem solving such as eliminating columns for large open spaces. Engineers need structural knowledge to be able to create innovative designs that are safe, functional, and aesthetic. Suggested learning outcomes Students will learn how to identify the key features of structural components. They’ll also know how to identify the various pressures a structural element can undergo and then apply their knowledge of structure to design an effective solution to overcome specific issues. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. You can download our classroom lesson plan below. Please do share your highlights with us @IETeducation.
Which medical imaging technique?
IETEducationIETEducation

Which medical imaging technique?

(2)
Select a method of medical imaging most appropriate for a particular medical condition The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links This activity gets students to work in small teams to select a method of medical imaging which is appropriate to a particular medical condition. Students are provided with the medical records of eight patients. The different imaging techniques covered in this activity include: CAT, Gamma cameras, MRI, PET, Thermology, Ultrasound and X-rays. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Four experiments with magnets
IETEducationIETEducation

Four experiments with magnets

(1)
Super simple fun science experiments These four fun science experiments using magnets are quick and easy to set up, suitable for learning at home or school. Your students will measure the effects of magnetism as magnets pass through tubes made of different materials; create a visual demonstration of Chaos theory with magnets affecting the swing of a pendulum; feel “attract” and “repel” forces of magnetism by placing magnets on either side of their hand, and use the magnetic field to make an object move as if it is alive. These four practical experiments demonstrate various different scientific principles related to magnets and magnetism, including: electromagnetic induction magnetic fields chaos theory. Tools/resources required Projector/Whiteboard Magnet kit 2 neodymium magnets plastic radiator pipe sleeves copper plumbing pipe Sticky tape Blu-tack Steel nut Cotton thread Chairs This activity could be used as a starter or main activity to introduce the effects of magnetism and magnetic fields, or as one of several activities within a wider scheme of learning focusing on different types of forces. These experiments could also be used as an introduction to power generation or the potential uses of magnets in Design and Technology and Engineering projects. This activity sheet was developed with the support and participation of the School of Engineering at Cardiff University. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Design an information system
IETEducationIETEducation

Design an information system

(1)
Design an information display system for disabled people The importance of smart sensors in our daily routines is growing significantly. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future. This engaging and thought-provoking activity introduces secondary school students to methods of looking at specific problems. To use the research and knowledge gained to find solutions to a problem, and to allow students to explore these solutions, however improbable they may seem. Students should design an information display system for use in their school which can be used by those with disabilities. For an example of a system diagram use the ‘Systems diagram’ handout. Students will communicate their solutions using annotated sketches. They should try and identify the Inputs and Outputs that are necessary. Furnish the students with both information sheets, and explain that any solution should be considered, no matter how crazy or improbable it seems. They will need to produce annotated sketches of a number of solutions – emphasise that these need to be clear so that others can understand. For each solution, a block diagram should be produced showing the Input-Process-Output for the design. How long will this activity take? This activity will take approximately 45 minutes to complete. Tools/resources required Woollen gloves Blindfolds Ear defenders Graphical equipment The engineering context Engineers play a crucial role in the development and implementation of smart sensors in various industries. Smart sensors are sensors that can process and analyse data, allowing them to make decisions without human intervention. Engineers are responsible for designing and integrating these sensors into systems, ensuring that they function correctly and provide accurate and reliable data. They also play a vital role in the development of innovative ways to use smart sensors to improve various processes, including healthcare, manufacturing, transportation, and many others. With the increasing demand for smarter and more efficient systems, engineers will continue to play a critical role in the advancement of smart sensor technology. Suggested learning outcomes By the end of this activity students will be able to identify problems for a specific task, use various methods to research a problem and explore solutions. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Investigate the James Webb Space Telescope
IETEducationIETEducation

Investigate the James Webb Space Telescope

(0)
Examine the materials used on the James Webb Space Telescope in this free activity. In this engaging STEM activity for KS3, we will delve into the groundbreaking technologies used in the construction of the James Webb Space Telescope (JWST), one of humanity’s most impressive space observatories. As budding engineers, students will have the unique opportunity to investigate the engineered materials that make the JWST a marvel of modern engineering. Get ready to uncover the secrets behind the telescope’s incredible capabilities, discover the innovative materials that withstand the harsh conditions of space, and gain a deeper understanding of how scientific ingenuity allows us to peer into the universe’s farthest reaches. Activity: Investigate the James Webb Space Telescope In this activity, students will investigate an engineered material and share the results of their research with the class. This unit has a predominantly design & technology, and engineering focus, although it could be used in science. It could also be used as a main lesson or a research activity to develop an understanding of materials and their properties. What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. Suggested learning outcomes By the end of this activity, students will be able to understand that materials can be selected for specific characteristics and purposes, they will be able to identify the properties of materials required for a particular function, and they will be able to explore a range of engineered materials, understanding why they are used. The engineering context The materials students will examine are used in the JWST or aerospace applications. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Mobile phones and health
IETEducationIETEducation

Mobile phones and health

(0)
Investigate the potential effects of mobile phones on our health The ‘Time for a game’ scheme of work provides an electronics systems context for students to explore infrared technologies. Activity info, teachers’ notes and curriculum links An engaging activity in which students will investigate the potential effects to health of the use of mobile phones and their transmitters, which use radio waves and microwaves to transmit information. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Make a Robinson Anemometer
IETEducationIETEducation

Make a Robinson Anemometer

(1)
Making a device to measure wind speed In this science project, students will construct a Robinson Anemometer using common household materials. Once built, students can use it to measure wind speed either inside with domestic items or outside with the natural environment. This activity can serve as a stand-alone project or as a component of a broader unit on weather or measurement. It is intended for upper Key Stage 2 learners (years 5 and 6). This resource is part of a collection of free STEM resources created to aid in the teaching of the primary national curriculum, especially in the areas of science and design and technology. The purpose of this activity is to aid in teaching key concepts through the construction of a homemade anemometer. Parts and components required: Polystyrene balls, 25 - 40 mm diameter, 1 per anemometer Wood/bamboo skewers, 3 per anemometer Putty (such as Blutack or Whitetak) OR modelling clay (such as clay, Plasticine or Playdough). EITHER 6 paper cups OR 4 paper cups and a plastic water bottle with a sports cap Sticky tape Tools and equipment required: Fans, hair-dryers or other sources of moving air Stop watches Commercial anemometer (for extension activity) The Robinson Anemometer The Robinson Anemometer is a type of cup anemometer, an instrument used for measuring wind speed. It was invented by John Thomas Romney Robinson in 1846 and is named after him. The Robinson Anemometer consists of four hemispherical cups mounted at the end of horizontal arms, which are attached to a vertical shaft. As the cups rotate due to the force of the wind, the speed of the wind can be calculated based on the rate of rotation. The Robinson Anemometer is still widely used today and is considered one of the most accurate and reliable types of anemometers. The engineering context Engineers need to be able to measure the forces that will act on the things they need to design. They need to understand how these measurements are made so that they can be confident that their designs will meet the requirements in practical situations. Suggested learning outcomes By the end of this activity students will have an understanding of what is meant by wind, they will be able to construct a simple mechanical device and they will be able to understand that the linear movement of air can be measured by the rotation of an anemometer. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Solar power in space
IETEducationIETEducation

Solar power in space

(0)
Investigate the photovoltaic effect and manufacture a simple circuit in this free activity. In this engaging task, students will explore the photovoltaic effect by creating a simple circuit and incorporating it into a product—specifically, a solar-powered version of the well-known jitterbug project called a “solarbug” This activity can serve as a targeted hands-on exercise for subjects like Electronics or Product Design under the umbrella of Design & Technology. Alternatively, it could be included as a component of a study on the application of solar energy in the field of science. Activity: Solar power in space Photovoltaic cells, also known as solar cells, are used as a power source by the James Webb Space Telescope (JWST). This activity is one of a set of STEM resources developed with the theme of the James Webb Space Telescope to support the teaching of Science, Design & Technology, Engineering and Mathematics. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of increasingly complex electronic circuits. What is the James Webb Space Telescope? The James Webb Space Telescope (JWST) is the largest and most powerful telescope ever to be launched into space. It is a monumental leap in space exploration, building on the legacy of the Hubble Space Telescope. The JWST is the next great space science observatory, with a primary mission to unravel the mysteries of the universe. It will address lingering questions and achieve groundbreaking revelations across all fields of astronomy. The JWST is equipped with a suite of cutting-edge instruments that will allow it to study the universe in unprecedented detail. These instruments will help us better understand the Solar System, the formation of stars and planets, and the evolution of galaxies. The JWST is a revolutionary telescope that will blaze new trails in exploration. It is already making headlines with its first images, and it is sure to continue to amaze us for years to come. Suggested learning outcomes By the end of this activity, students will understand how photovoltaic cells work, how they can be used in a circuit and how to make a simple circuit. The engineering context The James Webb Space Telescope uses photovoltaic cells as its power source. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Analogue and digital
IETEducationIETEducation

Analogue and digital

(0)
From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. Activity info, teachers’ notes and curriculum links An engaging activity introducing students to the differences between analogue and digital communication. An analogue signal can be rendered useless by small amounts of interference, whereas a digital signal remains coherent. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
How do animals use sound
IETEducationIETEducation

How do animals use sound

(0)
How sounds travel as waves of different frequencies and wavelengths From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. This engaging STEM activity is aimed at KS3 students and deals with how animals use sounds and how sounds change in natural phenomena. This is so a student can understand how sound waves travel. The teacher will first distribute a copy of the ‘Animal Sounds’ handout, which can be downloaded below, to each student. Make sure students understand sound is a longitudinal wave of compressions and rarefactions of the material. Soundwaves follow the laws of wave behaviour, so they are a useful introduction to wave properties. This activity can be simplified (particularly for less able students) by creating a discussion on why different animals have different hearing ranges and their experience of phenomena such as the Doppler effect. Use the handout to discuss different sounds and what they might have learned in other lessons (e.g. music) about pitch, frequency, amplitude etc. As an extension students could produce a display from low to high frequency, showing where the sound ranges used by different animals lie. Students could consider how sounds outside the normal spectrum could be used to develop new products. For example, to make ‘silent’ devices to broadcast sound or data between two points. This is a quick and simple activity that will take approximately 15 minutes. The engineering context Sounds are vibrations travelling through materials. Many animals make sounds, either for communication or for location. Sound travels at different speeds in different materials. Generally, the denser the material, the faster the sound will travel. Sound is a longitudinal wave of compressions and rarefactions of the material (a rarefaction involves particles in the material being more spread out than usual). Sound waves follow the laws of wave behaviour, so they are a useful introduction to wave properties. Suggested learning outcomes By the end of this free resource students will know that sound is produced by objects vibrating and they will understand that sound is a longitudinal wave. They will also know about the range of frequencies that can be heard by humans and other animals and they will understand that sound travels at different speeds in different mediums. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please share your classroom learning highlights with us @IETeducation
Electromagnetic spectrum
IETEducationIETEducation

Electromagnetic spectrum

(0)
Compare different types of electromagnetic waves The electromagnetic spectrum is a fundamental part of our universe, influencing everything from the warmth of sunlight to the functionality of our electronics. This activity delves into different types of electromagnetic waves and their everyday applications. It ties into key concepts like the electromagnetic spectrum, infra-red, wave, and frequency. By investigating the technology used in the Nintendo Wii and designing an interactive ‘tag’ game, students will enjoy a hands-on, practical approach to learning. As part of the ‘Time for a game’ scheme of work, this activity provides an electronics systems context for students to explore infrared technologies. Other activities include Inputs and outputs of design and Binary numbers. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and design and technology (DT). Activity: Compare different types of electromagnetic waves This is an engaging activity in which students investigate the technology used in the Nintendo Wii, exploring infrared communication. They can then apply this knowledge and understanding into the design of an interactive ‘tag’ game. Download our activity overview and PowerPoint presentation for a detailed lesson plan for teaching students how to compare different types of electromagnetic waves. The engineering context Learning about the electromagnetic spectrum introduces them to principles critical to electrical and telecommunications engineering, such as understanding wave behaviour and frequencies. Suggested learning outcomes By the end of this activity, students will gain a solid understanding of how light and infrared travel as waves. They will comprehend the electromagnetic spectrum and its applications, as well as understand the link between frequency and wavelength. Furthermore, this activity nurtures critical thinking and independent investigation skills, providing a broader understanding of communication methods and technologies. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Smart and modern materials
IETEducationIETEducation

Smart and modern materials

(0)
The new materials changing the way we live Discover and explore the new materials changing the way we live with our Smart and modern materials activity. The development of new materials with incredible properties are changing the way we live: from LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. Activity info, teachers’ notes and curriculum links In this practical lesson, students conduct different tests on a selection of materials and identify each one from its properties. The tests include Eureka cans, electrical circuits, and other interesting investigations to test the density, hardness, magnetic and conductive properties of materials. This activity can be tailored to include tests that best investigate the properties of the materials you have available. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation Tools/resources required Resources required for class: Samples of 8 to10 different materials, with more than one sample of each if possible. All the samples should be able to fit in the available eureka cans Access to accurate weighing scales Safety glasses. Resources required per team: HB pencil, copper coin*, knife**, iron nail, small steel file Eureka can and an accurate measuring cylinder A magnet Powerpack/battery pack, 3 leads, light bulb and holder, crocodile clips A pad of sticky notes. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. To watch the ‘Nature reinvented’ video, please visit IET Education website.
Energy transfer
IETEducationIETEducation

Energy transfer

(0)
Explore energy transfer and energy efficiency using wind turbines The concept of energy transfer is brought to life in this activity, showing students how the kinetic energy of wind can be harnessed to power homes and businesses. Windmills and wind turbines are based upon the principle of trying to create a shape where air flow causes the maximum possible change in kinetic energy. The hands-on nature of this task, which involves modifying a basic wind turbine to generate electricity, will appeal to students’ curiosity and creativity. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT). Tools/resources needed Electric fans Turbines at 5 angles (Most blades can be bought as kits, or partial kits can be purchased where students can build their own blades) Wires Rulers Crocodile clips Voltmeter Ammeter or multimeter Model Generator Activity: Explore energy transfer and energy efficiency using wind turbines This activity gives students the opportunity to explore how the energy efficiency of turbines is directly affected by their design (shape and angle, which can be determined through the study of aerodynamics). The engineering context This activity provides a real-world context, introducing students to the principles of aerodynamics and energy efficiency in engineering design. As they explore how the shape and angle of turbine blades affect energy conversion, they’re learning vital principles relevant to fields such as renewable energy engineering, mechanical engineering, and environmental engineering. Suggested learning outcomes By the end of this activity, students should be able to describe how energy is transferred using turbines and explain the importance of efficiency in devices. They will have designed an investigation to determine the relationship between efficiency and turbine design (shape and angle). Students will also have developed critical thinking skills as they control variables and analyse results to improve accuracy. In addition, they’ll gain a broader understanding of renewable energy resources, highlighting the need to develop alternative ways to generate electricity. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Aerodynamics in action
IETEducationIETEducation

Aerodynamics in action

(1)
Through this fun and engaging STEM activity, learners will understand how aerodynamic and streamlined shapes are used in our day to day lives and the design, technology, and engineering principles behind them. This is a free resource aimed at secondary school children. Students will have the opportunity to learn about aerodynamic forces and aerodynamic design and how these design principles enhance speed and efficiency in a product. A brilliant engineering activity for kids. Students will start to understand the basic principles of aerodynamics by looking at familiar products that have been designed with ‘speed’ in mind and through identifying features common to these products. Later, they could start to explore the requirements of aerodynamic design through testing simple shapes in a wind tunnel and through water. The activity focuses on students acquiring an understanding of aerodynamics through testing, experimenting, and developing. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project. However, it can also be tackled independently from each subject. What do the images have in common? Why have they been designed in that shape? Could they be split into themed groups? As an extension students could be asked to consider the social/economic and technological benefits (and drawbacks) of each example. This will give some reasoning behind the development of the final design and illustrate how there are many different factors affecting the design. The engineering context Aerodynamics refers to the way air moves around things. Anything that moves through the air reacts to aerodynamics. Aerodynamics acts on aeroplanes, rockets, kites and even cars! Suggested learning outcomes By the end of this activity students will be able to identify areas where aerodynamics is used in real life and they will be able to describe the social/economic and technological effect of the work. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation