Hero image

516Uploads

198k+Views

106k+Downloads

Puff pastry pizza swirls recipe
IETEducationIETEducation

Puff pastry pizza swirls recipe

(0)
Design and make puff pastry pizza swirls with a STEM twist. Puff pastry pizza swirls recipe - easy and fun to do with 4-11 year olds! This can be done as part of a food tech lesson or at home, as the activity is all mapped to the UK curricula for you - download for free below. This is one of a series of resources designed to allow learners to use the theme of celebration to develop their knowledge and skills in Design & Technology. This resource focuses on the designing and making of a food item to serve at a street party celebrating the occasion. This activity could be used as a main lesson activity to teach sketching design ideas and preparing food products for particular events. It could also be used as part of a wider scheme of learning to support focused practical skills within food lessons or – through measuring and weighing ingredients – to support the development of basic mathematical skills. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation
Gingerbread man STEM challenge
IETEducationIETEducation

Gingerbread man STEM challenge

(0)
Explore maths with gingerbread men, and find out how many combinations of buttons are possibilities. This is a simple maths game for KS1 and KS2 mathematics, as a curriculum mapped activity to do at school or home. This activity in partnership with MEI is a ‘finding all possibilities’ type of problem. It encourages children to work systematically to ensure they know when all the solutions have been found, as well as ensuring they haven’t made any two gingerbread men look exactly the same. A strategy that will be promoted is the idea of fixing one of the variables, in this case one of the buttons, whilst changing the others in turn. To ensure they become confident talking about their maths, ask the children to work in pairs if possible in a classroom or at home. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Density using Archimedes' principle
IETEducationIETEducation

Density using Archimedes' principle

(0)
Work out the density of materials This activity for primary kids gives them an opportunity to work out the density of a material using Archimedes’ principle, an ancient Greek mathematician. Combining maths and science, students will learn how to collect data through experimenting and understand the properties of materials. This activity will test students’ number abilities and teach them historical facts about ancient Greece. Resources are provided for teachers. And please do share your classroom learning highlights with us @IETeducation
Using Pythagoras Theorem
IETEducationIETEducation

Using Pythagoras Theorem

(0)
Use Pythagoras Theorem to measure objects In this activity for kids, students will be introduced to the concept of the Pythagoras Theorem and what it is used for. They will use this knowledge to create a string triangle in the proportion of 3:4:5 and use it to measure objects from their base. This activity will test students’ maths abilities and teach them historical facts about ancient Greece. Resources for teachers are available. And please do share your classroom learning highlights with us @IETeducation
Maths tea party - fun maths game for kids
IETEducationIETEducation

Maths tea party - fun maths game for kids

(0)
Position the tea party items into a square grid so that each row and column contains one of each Children’s maths games make learning fun! Download our five activities for free, and go through each one in turn to make up this fun maths lesson for 5 to 11 year olds. The aim is to position different coloured items into a square grid so that each row and column contains one of each. The purpose of this activity is to explore problem solving strategies including trial and improvement, pattern spotting and using known strategies to tackle a new problem. This lesson links to a 200-year-old maths puzzle and also to Latin Squares or Euler Squares which form the basis of popular Sudoku puzzles. There is also the opportunity to explore rotation and symmetry and to use these as problem solving strategies. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Addition and subtraction worksheet
IETEducationIETEducation

Addition and subtraction worksheet

(0)
Solving addition and subtraction problems to crack the safe code This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on solving addition- and subtraction-based numeracy problems to find the code that will open a safe door. Do you have the maths knowledge to ‘crack the code’ and open the safe? Activity info, teachers’ notes and curriculum links In this activity, learners will solve three addition and subtraction problems. The answer to each problem will give two out of the six digits needed to crack the code to a safe. They will reinforce their addition and subtraction knowledge and apply this in a fun context. This activity could be used as a starter activity covering learning from the previous lesson, a plenary activity reinforcing learning that has just taken place, or as one of several activities within a wider scheme of learning focusing on addition and subtraction. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Remember, the downloads are all free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Edges, vertices and faces
IETEducationIETEducation

Edges, vertices and faces

(0)
Making cut-out 3D shapes and counting the number of edges, vertices and faces In this fun maths activity for Key Stage 2, learners will enhance their knowledge and comprehension of 3D shapes. They will cut out 2D nets for a cube, pyramid, cylinder, and octahedron, then fold them to form their corresponding 3D shapes. Through this process, they will also determine and count the number of edges, vertices, and faces on each shape. This activity can serve as a main lesson to develop an understanding of the characteristics of common 3D shapes. Alternatively, it can be integrated into a broader curriculum that focuses on the properties of 2D shapes, 3D shapes, and everyday objects. The engineering context Engineers must regularly use mathematics knowledge and skills as part of their everyday job. Therefore, they must have a good grasp of basic concepts, such as the properties of 3D shapes. Suggested learning outcomes By the end of this activity, students will be able to make 3D shapes such as cubes, pyramids, cylinders and octahedrons from 2D nets, and they will understand the difference between the edges, vertices and faces of a 3D shape. They will know the number of edges, vertices and faces on a cube, pyramid, cylinder and octahedron. Download for activity sheets and templates for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Calculate journey times
IETEducationIETEducation

Calculate journey times

(0)
An activity to compare journey times for different modes of transport In this fun activity for KS1, learners will calculate the times taken to complete the same journey using different modes of transport, allowing them to put their math skills into practical use. This activity is part of a collection of STEM resources developed to aid the teaching of the primary national curriculum. Its purpose is to assist in delivering essential topics within mathematics and science. This could be used as a one-off main lesson activity to develop basic maths skills in context. Learners will be given the “Who’s Fastest” activity sheet to complete. They will calculate the journey times for each mode of transport and rank them from fastest to slowest. After completing the calculations, the class will engage in a discussion. They will explore which mode of transport emerged as the fastest and why it held that position. Furthermore, they will consider which transport mode they would prefer to use for the given journey and explain their reasoning. By the end of this activity, the learners will have gained a deeper understanding of the relationship between distance, speed, and time while also having fun comparing different modes of transportation. The engineering context Comparing results is crucial in engineering as it aids in enhancing efficiency. Different modes of transportation have varying impacts on the environment. Consequently, a transport engineer’s task involves determining the most suitable transportation method for specific situations, such as employing trams in a city. Suggested learning outcomes By the end of this activity, students will be able to solve a contextual problem using division and multiplication, and they will be able to understand how to calculate different journey times for alternative modes of transport. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Comparing the carbon footprint of transportation
IETEducationIETEducation

Comparing the carbon footprint of transportation

(0)
A maths-based challenge for KS3 to calculate the journey times and carbon footprint of different methods of travel As well as testing students’ mathematical abilities, this activity highlights the issue of sustainable travel and the effects of some modes of transport on the environment. This could be used as a one-off main lesson activity to use maths skills in context, or as part of a scheme of work on sustainability, to build knowledge and understanding of climate change and ways of reducing it. Activity introduction This activity is one of a series of resources designed in conjunction with Network Rail to develop understanding and skills in key maths, science, and engineering concepts. The carbon footprint data in the presentation is derived from passenger-specific figures published by BEIS/Defra Greenhouse Gas Conversion Factors 2019. Transportation speeds are approximations based on typical values obtained from commonly used search engines. Any statistical or speed-related data used in this activity serves its sole purpose within the activity and may not accurately mirror current real-world conditions. Variability might arise due to seasonal changes, environmental conditions, or legal constraints. When utilising the activity sheet, students can construct tables for each journey, showcasing their findings (as depicted on the sheet). For air travel, a buffer of 3 hours should be allotted to account for check-in, security procedures, and boarding at airports. To add an additional layer of complexity, transit times to airports and railway stations could be incorporated. The presentation includes supplementary slides for those who prefer kilometres instead of miles. The engineering context Engineers must understand how products impact the environment; This pertains not only to modes of transportation but also encompasses the production of new items. They can use this knowledge to balance the environmental impact with the function carried out by the product. Engineers can also develop new or improved Suggested learning outcomes By the end of this activity, students will be able to solve a contextual problem using division and multiplication, and they will understand how to calculate journey times and the carbon footprint for alternative modes of transport. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Fault detectors using circles
IETEducationIETEducation

Fault detectors using circles

(0)
In this activity students will calculate the area of a circle to design a fault detector system. They’ll use a GeoGebra file to measure the size of the defect in hot steel bars produced by the company. They’ll then have to organise the information they receive into an understandable table. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in mathematics. Activity: Organising mathematical information to choose the optimum size for a ‘fault detector’ coil In this lesson students will engage in a roleplay activity that uses mathematical calculations to figure out the ideal size for a fault detection coil. A company has invented a system to find defects in hot steel bars. The hot cylindrical bar must pass through a defect detector which is shaped like a ring. To work properly the bar must fill between 60 to 80% of the area inside the detector ring. The activity starts with a warm-up question related to circles and percentages to introduce the concept of fault detectors used in factories, where students can check their answers with the fault detectors GeoGebra file. Then, students will need to use reasoning to work out a more challenging problem related to fault detector design. Students will use the same GeoGebra file but they’ll need to work out how to organise the given information to answer the question. Download our activity overview and presentation for a detailed lesson plan and worksheet with answers on making fault detectors using the area of a circle. The engineering context Engineers rely on fault detectors as an essential tool in various manufacturing processes to guarantee the quality of their products. To ensure the safety and dependability of products, engineers must carefully design fault detectors capable of precisely identifying any imperfections or defects. Suggested learning outcomes Working with both diameter and radius, students will be able to use a formula to calculate the area of a circle. They’ll also be able to organise data using tables. Download our activity sheet and related teaching resources for free The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation.
Queueing theory
IETEducationIETEducation

Queueing theory

(0)
Queuing theory is a mathematical discipline that helps us understand the behaviour of queues and make predictions about their performance. It considers various factors such as arrival rates, service times, and queue lengths to analyse and optimise queuing systems. By applying queuing theory principles, students will learn how to evaluate different queues and determine which will likely offer a shorter waiting time. Through this activity, you will develop your analytical and problem-solving skills and gain a deeper understanding of queuing theory concepts. You will also learn how to apply these principles in real-life situations, making you a proficient queue navigator in the future! Activity In this activity, students will be presented with two different systems of queues. They should think about the benefits and problems with each system. Encourage the students to think about how they can compare the two systems. What figures could they calculate? What diagrams would help to provide a picture of the advantages and disadvantages of each system? Give the students time to find/calculate their figures and then ask them to present their case. This task provides an opportunity to discuss the most appropriate average. The mean time for the first system is affected by longer wait times for a few customers. Would the mode time be a better average, as this is the most frequent experience, or is the median better? The engineering context Queuing theory is an area of maths which has many applications. When you log onto the internet, you join a queue for a server. Computer engineers and systems designers study queues to help them make systems work more efficiently. Civil engineers use it for traffic lights, and retailers use queuing theory to reduce wait time. Potential GCSE content In this activity, students will learn how to determine the mean and calculate the median from a frequency table, compare two data sets using an average and measure of spread and find the quartiles and the interquartile range (IQR). This exercise will also cover statistical diagrams, reasoning, problem-solving, estimation, and modelling. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Estimate the radius of a circle of light
IETEducationIETEducation

Estimate the radius of a circle of light

(0)
Use proportional reasoning to estimate the radius of a circle of light produced by shining a torch at various distances from the wall This is an engaging activity for GCSE students in which learners will estimate the radius of a circle of light produced by shining a torch at various distances from the wall. In order to estimate the radius, students will need to use proportional reasoning or Pythagoras theorem. Students are encouraged to use GeoGebra to gather data. Problem Solving To solve the problem presented on the first slide, students will have to employ proportional reasoning. This can be utilised to reinforce concepts of enlargement, and potentially Pythagoras if the follow-up question is used. For the second problem, students will need to collect data, consider how to manipulate the control variable (distance) and organise the data to aid in identifying any connections between distance and area. Some students may choose to create a graph and extrapolate to determine the distance, while others may seek out a function. The related GeoGebra file for this activity can be viewed at the GeoGebra website. What is GeoGebra? GeoGebra is a free and open-source dynamic mathematics software that allows users to create and manipulate mathematical figures and interact with them in real-time. It can be used to plot graphs, create 3D models, solve equations, and perform complex mathematical operations. It is widely used in education, particularly in the teaching and learning of STEM subjects. GeoGebra is available for use on desktops, tablets, and mobile devices. Potential GCSE content covered By the end of this activity students will have an understanding of Pythagoras’ Theorem, the area of a circle, and enlargement. Download the free Estimate the Radius of a Circle of Light activity sheet below! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Model boat maths challenge for GCSE
IETEducationIETEducation

Model boat maths challenge for GCSE

(0)
Calculate the distance a model boat will travel across water Two friends are on opposite banks of a river which is 30m wide. One of them has a model boat and plans to send it across the river to the other. The boat has a small motor which moves it forward. Once the boat is in the water, it cannot be steered. Can your students calculate the distance that the model boat will need to travel across the water? This fun maths challenge will teach students about forces and motion and is perfect for GCSE students! Activity: Model boat maths challenge for GCSE The students can work individually or in pairs. Download the teacher presentation below and allow the students some time to read the task on the first slide, then show them slide 2. Students will need to find the distance downstream from the starting point. A generalised approach to such problems should be introduced along with slide 2. Leave the students to work on the task and then compare approaches and answers. A GeoGebra file has been supplied to help with the discussion. Problem Solving The students can tackle the problem in a number of ways. Some may choose to look at the path of the boat at 1 second intervals, possibly plotting the path on a graph. This is the way the GeoGebra file works. Others may use trigonometry to find the angle the boat travels and then use this with the 30m width of the river to find the distance downstream. Another approach would be to use a scale drawing. Pythagoras theorem or trigonometry can be used to find the displacement of the boat from its original position. The GeoGebra file may be useful to students who wish to gather some results for the general approach or to check their answers. Discussion Points This activity could provide an opportunity to introduce vectors and possible resultant force, making a connection with Physics. Comparing the advantages and disadvantages of various approaches would provide students with the opportunity to consolidate their learning. Extending the problem It could also be possible, with some students, to consider how to point the boat upstream, so that it ends up at the point directly opposite the start. Potential GCSE content covered In this activity students will cover graphs, Pythagoras theorem and vectors. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Mathematical measuring - lengths of leaves
IETEducationIETEducation

Mathematical measuring - lengths of leaves

(0)
The natural environment – measuring leaves Trees and their leaves are an important part of our natural environment. We can use our maths and science knowledge to better understand them and hence the environment around us! In this activity each participant chooses a tree to collect six leaves from. Once the whole class has collected their leaves, return to the classroom to measure the lengths and widths of six leaves from a single tree. Place this data in a table and then calculate the mean average length and width of the leaves from the tree. As a class discuss the meaning of these values. What do they tell us about the size of the leaves on each tree sampled? Activity info, teachers’ notes and curriculum links This is one of a set of resources developed to support the teaching of the primary national curriculum; they are designed to support the delivery of key topics within maths and science. This activity could be used as a main lesson activity to teach learners how to collect data and calculate the mean value of a data set. It could also be used as one of several activities within a wider scheme of learning focusing on the use of maths and science to understand the natural environment. Tools/resources required Access to an outside area with trees and leaves Rulers and/or tape measures Calculators The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation
Create a map of local flora and fauna
IETEducationIETEducation

Create a map of local flora and fauna

(0)
Gather information about local flora and fauna and create a map with coordinates showing the location of plants and animals In this engaging activity for KS2, students will work in groups to collect information about the flora and fauna in their area. They will then create a map that displays the location of these plants and animals using coordinates. This is one of a set of free STEM resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource combines understanding of the natural world with maths skills, to create a map and guidebook of the local flora and fauna. A fun and practical exercise in which students will take real measurements of the area and use grid paper to create a scale representation. Additionally, students will incorporate digital photographs or drawings of the flora and fauna to create informational pages for the guidebook. For optimal results, it is advisable to conduct this activity in small groups. Selecting a suitable location is crucial, which could be the school grounds, nearby park, or other accessible area such as a local forest. It may be best if only one team member produces the map, and the other focus on measurement and describing the observed flora and fauna. The flora and fauna could include plants, trees, observed birds and wildlife and insects. This activity will take approximately 80-120 minutes to complete. Tools/resources required Access to an appropriate outside area with flora and fauna Pencils Rulers Clipboards Digital cameras Grid sheets to map the local area Tape measures Chalk Glue sticks or sticky tape The engineering context Environmental engineers across the globe engage in the mapping of flora and fauna to monitor changes in the natural world. Their research spans a variety of areas, including the impact of deforestation in the Amazon, the effects of climate change in the Polar regions, and the consequences of flooding in Asia. Suggested learning outcomes By the end of this activity students will be able to draw a map, they will be able to plot the positions using coordinates and they will be able to create, identify, and describe flora and fauna. Additionally, they will be able to use SI units for lengths/distances and they will be able to measure an area and scale it onto a map. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Tally chart activity
IETEducationIETEducation

Tally chart activity

(0)
In this interactive and engaging activity, students will create a tally chart to collect data and discover the most popular colours in the class. Get ready to observe, count, and tally as you learn more about your classmates’ colour preferences. By the end of this activity, you will not only have a beautiful visual representation of your classes’ favourite colours, but you will also develop your data collection and analysis skills. Activity This activity is one of a set of free STEM resources developed to support teaching the primary national curriculum and key topics within maths and science. In this activity, learners will produce a tally chart of favourite colours in a class. They will split into groups and go around to the other learners in the class, recording their favourite colours in their chart. They will then add up the totals and discuss their results. This activity could be used as a main lesson to develop knowledge and understanding of recording and displaying data methods or as part of a wider scheme of learning focusing on statistics. It could also be used as a starting point for learning based on the use of colour in Design & Technology. How long will this activity take? This activity will take approximately 40-60 minutes to complete. Why do we use tally charts? Tally charts are used to collect and organise data visually. They provide a quick and efficient way to record and count occurrences or responses. Tally charts help simplify data collection, making it easier to analyse and interpret information and identify patterns or trends. The engineering context Transport engineers use tally charts to record how many vehicles, and of what types, pass through road junctions or along busy roads; this helps them to plan the timings of traffic lights and identify routes where changes are needed. Engineers need an understanding of colour when producing aesthetically pleasing solutions for clients. Suggested learning outcomes By the end of this activity, students will be able to construct a tally chart to record and analyse data about their favourite colours. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Salute - KS1 maths card game
IETEducationIETEducation

Salute - KS1 maths card game

(0)
Get ready to engage their mathematical skills in this fast-paced and interactive math card game. This game of Salute will challenge addition abilities, help improve number recognition, and enhance critical thinking skills. It promotes quick thinking, decision-making, and collaboration, making it a perfect activity to strengthen mathematical foundations while having fun. This activity could be used as a starter activity covering learning from the previous lesson, a plenary activity reinforcing learning that has just taken place, or as one of several activities within a wider scheme of learning focusing on addition and subtraction. The rules Form groups of three and get ready for an engaging activity. Here’s how it works: Players 1 and 2 each select a numbered card from a pile and hold it against their forehead, facing outward. Make sure they cannot see their own number. Player 3 adds the two numbers together and announces the total. Players 1 and 2 use their deduction skills to guess the numbers on their cards based on the total announced by Player 3. Rotate the roles, with each player taking turns as Player 1, Player 2, and Player 3, and repeat the game. This entertaining game will challenge your observation and mental calculation abilities while providing a fun opportunity to collaborate and strategise with your group members. For added competition, a time limit could be set on how long learners have to answer each question. The game can be played until all learners have had a go in the different roles or as many times as required. How long will this activity take? This activity will take approximately 25-40 minutes to complete. Download our free, printable numbered cards below to begin. The numbers 1-20 are provided in line with the KS1 curriculum, but if extra challenge is required, these can be added to. The engineering context Engineers must regularly use mathematics knowledge and skills as part of their everyday job. For example, adding up how many parts are needed to build an aeroplane, calculating how strong a bridge needs to be or working out how much material is required to make the surgical gown for a hospital. Suggested learning outcomes By the end of this activity, students will be able to read the numbers 1-20, solve addition problems using the numbers 1-20, and they will be able to add one and two-digit numbers up to 20. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Easy cookie recipe - KS1 maths: Scaling and ratios
IETEducationIETEducation

Easy cookie recipe - KS1 maths: Scaling and ratios

(0)
This resource focuses on developing the understanding of ratio, fractions and scaling, by scaling up ingredients in a recipe. It could also be linked to learning in food technology, to demonstrate a practical application of maths. In this activity, students will embark on a delicious culinary adventure as they learn to expand an easy cookie recipe to create larger batches. Scaling up a recipe requires careful calculation and understanding of ingredient proportions and ratios, making it a perfect opportunity to enhance mathematical skills while indulging in the sweet rewards of baking. Suggested learning outcomes By the end of this activity, students will be able to solve a scaling-up problem involving a recipe using maths skills. The engineering context Food engineers are employed in food processing, machinery, packaging, and ingredient manufacturing. When a new food product, e.g., a breakfast cereal, has been developed, they may have to plan to scale up the production to make thousands of boxes of it each day. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your baking highlights with us @IETeducation
How to calculate density
IETEducationIETEducation

How to calculate density

(0)
Finding the density of materials by weighing items and immersing them in water This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on understanding density and, through a series of practical tests, working out which materials are low and high density. Activity info, teachers’ notes and curriculum links In this activity learners will learn about the density of materials through testing. Learners will have an opportunity to weigh and work out the volume of an object. They will use this information and their number skills to calculate the density. They will then repeat this for other objects and discuss their results as a class. This activity could be used as a main lesson activity, to teach learners how to collect data through measurement and to use number skills in a practical context. It could also be used as one of several activities within a wider scheme of learning focusing on the use of maths and science to understand the properties of materials. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your learning highlights with us @IETeducation
How much paper comes from a tree
IETEducationIETEducation

How much paper comes from a tree

(0)
In this fun maths activity for KS2, students will measure the weight of different paper-based packaging materials and calculate the potential number of items that could be produced from an average tree. This task will teach learners how to use division to solve real-world problems. It can also function as part of a wider scheme of learning centred around utilising mathematics to comprehend ratios and proportions or as an introduction to sustainability concepts. By considering the number of natural resources needed to make common everyday items, we can also become informed consumers with more awareness of the environmental impact of our consumption. What you will need How much paper comes from a tree worksheet Selection of paper products Scales Pencils Erasers Calculators The engineering context Engineers must possess knowledge of the number of items they can produce from a single source. For instance, in clothes manufacturing, production engineers should be aware of the number of shirts or dresses that can be made from a single roll of fabric. Suggested learning outcomes By the end of this activity, students will be able to know how to use division to solve practical problems, they will be able to convert grams to kilograms, and they will be able to calculate how many paper-based items can be made from one tree. Download for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation