Hero image

524Uploads

214k+Views

114k+Downloads

Make a Robinson Anemometer
IETEducationIETEducation

Make a Robinson Anemometer

(1)
Making a device to measure wind speed In this science project, students will construct a Robinson Anemometer using common household materials. Once built, students can use it to measure wind speed either inside with domestic items or outside with the natural environment. This activity can serve as a stand-alone project or as a component of a broader unit on weather or measurement. It is intended for upper Key Stage 2 learners (years 5 and 6). This resource is part of a collection of free STEM resources created to aid in the teaching of the primary national curriculum, especially in the areas of science and design and technology. The purpose of this activity is to aid in teaching key concepts through the construction of a homemade anemometer. Parts and components required: Polystyrene balls, 25 - 40 mm diameter, 1 per anemometer Wood/bamboo skewers, 3 per anemometer Putty (such as Blutack or Whitetak) OR modelling clay (such as clay, Plasticine or Playdough). EITHER 6 paper cups OR 4 paper cups and a plastic water bottle with a sports cap Sticky tape Tools and equipment required: Fans, hair-dryers or other sources of moving air Stop watches Commercial anemometer (for extension activity) The Robinson Anemometer The Robinson Anemometer is a type of cup anemometer, an instrument used for measuring wind speed. It was invented by John Thomas Romney Robinson in 1846 and is named after him. The Robinson Anemometer consists of four hemispherical cups mounted at the end of horizontal arms, which are attached to a vertical shaft. As the cups rotate due to the force of the wind, the speed of the wind can be calculated based on the rate of rotation. The Robinson Anemometer is still widely used today and is considered one of the most accurate and reliable types of anemometers. The engineering context Engineers need to be able to measure the forces that will act on the things they need to design. They need to understand how these measurements are made so that they can be confident that their designs will meet the requirements in practical situations. Suggested learning outcomes By the end of this activity students will have an understanding of what is meant by wind, they will be able to construct a simple mechanical device and they will be able to understand that the linear movement of air can be measured by the rotation of an anemometer. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How Does the Light from a Torch Change with Distance?
IETEducationIETEducation

How Does the Light from a Torch Change with Distance?

(0)
Carry out an experiment to measure how the light from a torch changes with the distance from a lamp In this activity learners will carry out an experiment to measure how the light from a torch changes with the distance from the lamp. They will record their results in a table and plot a graph. Activity: How Does the Light from a Torch Change with Distance? This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science, design and technology, and maths (in this case, mainly science). This resource focuses on the investigation of how the light from a torch (flashlight) changes with distance. This activity is designed to be carried out in small groups. It is recommended that the teacher carry out the activity in advance of the lesson, to determine whether the distances suggested give sufficient (or excessive) spread of the light image, as this will be determined by the design of the torch used. It is recommended that new batteries are used in the torch, as the light intensity may be affected by the amount of charge remaining in the batteries. This could be used as a one-off activity in science or linked to maths learning about tables and graphs. This activity will take approximately 40-60 minutes to complete. Tools/resources required Graph paper Masking tape Tape measures Torches/flashlights (with new batteries) Pencils (for extension) laser pointer (for extension) cut-out templates of simple shapes (e.g. square, triangle, circle), mounted on craft sticks The engineering context Engineers need to understand how light behaves when designing products for many practical applications. For example, when designing buildings, they may consider the provision of windows and artificial lighting; and when designing cars, they may consider the power and position of both internal and external lights and the placement of mirrors. Suggested learning outcomes By the end of this activity students will be able to carry out a scientific experiment and they will understand that the distribution of light from a torch changes with distance. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Section drawings
IETEducationIETEducation

Section drawings

(0)
How to Draw a Section Drawing This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and maths. This resource focusses on creating a section drawing of a product. Different types of drawing are used to communicate different types of information. Section drawings are a type of 2D drawing that show the parts or features inside a product. In effect, a section drawing shows the view as if the product has been cut in half – most typically this is along the longer dimension of the product, such as its length. Section drawings are used to show what the inside of a product looks like and how the parts of a product fit together. Producing a section drawing develops drawing skills, whilst simultaneously allowing concepts such as dimensions, proportion and scale to be introduced in a practical context. In this activity learners will produce a section drawing of a safety helmet worn by cyclists, working in proportion and ideally to scale. This could be used as a one-off activity or linked to other D&T activities, such as product analysis or exploded drawing (especially when using the extension activity, creating a section drawing of a pen). It could also be used in conjunction with the IET Faraday Primary Poster – Section Views. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Exploded views
IETEducationIETEducation

Exploded views

(0)
How to draw an exploded view This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and maths. This resource focusses on drawing exploded views of products. Different types of drawing are used to communicate different types of information. Exploded views show how the component parts of a product relate to each other. These are widely used to support the assembly of products, for maintenance activities and when building flat pack furniture at home. Producing an exploded view develops drawing skills, whilst simultaneously allowing concepts such as dimensions, proportion and scale to be introduced in a practical context. In this activity learners will produce an exploded view drawing of a pen, working in proportion and ideally to scale. This could be used as a one-off activity, an extension to maths learning on scale, or linked to D&T activities such as product analysis or section drawing. It could also be used in conjunction with the IET primary poster – Exploded Views. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Repeated graphical patterns
IETEducationIETEducation

Repeated graphical patterns

(0)
Reading and interpreting wave patterns in a graph Engineers sometimes have to analyse data which shows a repeating pattern. Plotting a graph of the data is often helpful as it shows a picture of the pattern. This pattern may sometimes go on and on in a sequence. In this activity, students will learn about the concept of repeated graphical patterns. Inspired by wave patterns, this lesson plan will offer a practical way for students to learn about reading, interpreting graphs as well as sequences. It will explore the periodic nature of these wave patterns, identifying maximum and minimum values, and looking for symmetrical properties. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics. Activity: Interpreting wave patterns in a graph Students will start by reading the slides and answering questions on the first slide in pairs or small groups. They’ll delve into the world of wave patterns, discussing points like maximum and minimum values, the frequency of the pattern repetition, and the location of symmetry. The second slide will challenge them further by asking them to predict the shape of the pattern at various points based on its period. Download our activity overview and presentation for a detailed lesson plan for teaching students about how to interpreted wave patterns in a graph. The engineering context Many fields of engineering, such as signal processing, acoustics, and telecommunications, heavily rely on understanding wave patterns and their properties. By exploring these concepts in a fun and engaging way, students will see how engineers use mathematical concepts like these to create innovative solutions and products. Suggested learning outcomes Upon completion of this activity, students are expected to have a deeper understanding of reading and interpreting graphs, particularly wave patterns. They will learn how to identify maximum and minimum values, understand the concept of the period of a function, and recognise lines of symmetry. Furthermore, they’ll develop problem-solving skills as they use these concepts to predict sequences and future points in the pattern. Download our activity sheet and other teaching resources for free The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan, presentation and handout. Please do share your highlights with us @IETeducation
Chinese New Year: A red letter day
IETEducationIETEducation

Chinese New Year: A red letter day

(0)
Making a beautiful red gift envelope for Chinese New Year. In this activity students will learn about nets within a graphics project and will have an opportunity to use a net to make a Chinese red envelope. During the New Year in China, it is traditional to give the gift of a bright, beautiful red envelope to your friends and family. In Chinese the red envelope is known as 紅包, hóngbāo) and the red colour symbolizes good luck and prosperity. Often the envelope contains money. The envelopes are often decorated with good luck symbols like happy children, beautiful clothing and a peach. Download the activities sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Materials you will need: Red card Glue sticks or PVA Scissors Optional: gold/Silver pens to add decoration Optional: pre-printed Chinese New Year images. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Pulleys - Forces in equilibrium
IETEducationIETEducation

Pulleys - Forces in equilibrium

(0)
In this pulleys A Level maths resource, you examine forces in equilibrium in a hands-on activity and explore A Level maths. Can you use your knowledge of mechanics to predict the mass of the unknown object? Do the ks5 calculations and then check your predictions. This practical is designed to be easily set up and carried out in an A Level maths classroom using simple equipment. It will help students to understand the mechanics topics of forces and Newton’s laws in A level Mathematics. It is covered in KS5 AQA A Level maths and Edexcel A Level maths curricula. The pulleys video features the equipment needed and the practical procedure. The teacher notes contain additional guidance on carrying out the activity, sample calculations and suggested points for discussion, as well as an indication of some relevant real-life applications. Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation as you find more A Level maths resources and A Level maths lesson plans from the IET.
Wind turbine calculations
IETEducationIETEducation

Wind turbine calculations

(1)
Throughout this engaging activity designed for GCSE students, learners will face intriguing challenges that revolve around wind turbines, where their problem-solving skills will be tested using equations and systematic listing techniques. By applying mathematical principles and systematic approaches, learners will uncover the secrets behind these sustainable energy marvels and gain a deeper appreciation for their significance in today’s world. It is recommended to utilise a table format for displaying the values learners substitute into the equation, along with the corresponding outcomes, indicating whether they are too large or too small. Problem Solving Students will likely employ trial and improvement or a graphical method to tackle the first question. Some may also opt to utilise a spreadsheet for their calculations. To ensure the accuracy of their solutions up to two decimal places, they are encouraged to consider using a number line, which can aid in the verification process. As for the final problem, students will need to adopt a systematic listing approach or explore other methodologies to ensure that every possible combination of gears has been thoroughly explored and tested. This activity aims to empower students to approach challenges creatively and thoughtfully by providing various problem-solving techniques and strategies. This process will sharpen their mathematical abilities and cultivate critical thinking skills, enabling them to tackle complex problems with confidence and precision. Discussion points Promote active discussion among the students regarding the diverse approaches they have employed and how they can ensure the accuracy of their answers up to two decimal places. If students have not chosen the graphical approach to solve the problem, consider demonstrating it to the class. Encourage a comparative analysis of the various methods used to address the subsequent problems and enquire about the students’ strategies to ensure they have explored all potential combinations of gears. Potential GCSE content This activity will cover using trial and improvement to solve an equation, calculations with fractions, ratios and systematic listing. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Well placement between villages
IETEducationIETEducation

Well placement between villages

(0)
Calculate the distance from a village to a potential well position In a large semi-desert area, three small villages are to share a new well. Engineers will create the well by drilling down to the water table. But where should the well be placed? Activity info, teachers’ notes and curriculum links An engaging activity in which students will determine the best location for a well between 3 villages. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The related GeoGebra file for this activity can be view on the geoGebra website And please do share your classroom learning highlights with us @IETeducation
Speedometer calibration
IETEducationIETEducation

Speedometer calibration

(0)
In this fun GCSE maths activity, students will delve into the exciting world of bicycle speedometers and put their accuracy to the test. By conducting this experiment, learners will better understand how speedometers work and sharpen their mathematical and analytical skills. Download the presentation below and allow the students to read the problem and contemplate how to model the situation mathematically. Some students may need assistance comprehending terms such as “front fork.” Encourage them to ponder the meaning of “ms-1,” such as the number of meters the wheel covers in one second. Furthermore, ask them to consider how they can determine the distance the wheel covers in a single rotation, two, or even 100 rotations. Problem Solving To solve this problem, the students will need to engage in logical thinking to determine the necessary information. One possible approach is to work backwards from the information required to answer the question (as shown below). We need the distance travelled (m) and the time taken (s) to calculate the speed. Given that the time is 1 minute, equal to 60 seconds, the question becomes: How can we find the distance? The wheel covers 0.5π meters per rotation, so for n rotations, the distance will be 0.5π x n. Consequently, the speed in ms-1 can be expressed as (0.5π x n)/60. The students can determine the percentage errors using this information and the speedometer readings. These errors vary slightly for each reading. Discussion points Examine how the students approached the problem, specifically analysing their thought processes. How did they determine the necessary information and identify ways to obtain it? You can review concepts such as calculating the circumference of a circle, working with percentages, rounding numbers, and ensuring precision. Potential GCSE content This activity will cover calculating the circumference of a circle from a radius, using compound measures (speed) and converting from minutes to seconds. Download the activity sheets below! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Seesaw scales
IETEducationIETEducation

Seesaw scales

(0)
Understanding levers and forces This STEM activity aims to develop children’s understanding of levers, specifically the seesaw class lever, one of the simplest forms of machine used to change the magnitude or direction of a force. Making a small seesaw model is a fun-filled way to introduce children to the concepts of levers and forces. By making simple levers, learners will grasp how the effort applied to a lever affects the load. This hands-on project not only sparks their curiosity but also encourages active learning. We’ve created this seesaw scale activity to support the teaching of key topics within design and technology (D&T), maths, and science as part of the primary national curriculum at key stage 2 (KS2). You can use it as a one-off activity or link it with a measurement activity in food technology. Activity: Making the lever Learners will make a simple lever assembly from a binder clip, ruler, two paper cups and sticky tape. Children will also be asked to use a lever to work out the force required to move a load. Learners will compare results and explain their findings. Depending on available resources, this activity could be carried out individually or in small teams. Tools/supplies needed: Rulers Large binder clips Paper cups Sticky tape Weights such as steel nuts, small weights from science or marbles The engineering context Engineers use their understanding of how the effort applied to a lever affects the load in designing a wide range of products. From weighing scales to control pedals in cars, nutcrackers, wheelbarrows, bottle openers, and scissors, levers find their application across various industries. By understanding the seesaw lever class, learners will gain a fundamental insight into the principles that govern these everyday objects. Suggested learning outcomes Through this activity, learners will gain the ability to identify the parts of a lever and understand how the effort applied to a lever affects the load. They’ll also understand the principle of balance in a seesaw lever and how distance from the fulcrum impacts the effort needed to move a load. This will equip them with the foundational knowledge about levers, a key component in KS2 science, and provide a practical context for understanding mathematical concepts like multiplication and equality. Download our activity sheet and other teaching resources for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so that you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation
Bake a Yule log
IETEducationIETEducation

Bake a Yule log

(0)
Give making a Yule log a STEM twist by using key maths skills to work on the weighing and timing for this delicious Christmas dessert. This is a great activity that brings together baking skills, mathematics and creativity, and tastes delicious! The Yule Log is a traditional cake eaten at Christmas. It is thought that this cake originated in France to represent the wooden log that was burned to bring good luck through the winter months. It was hoped that by burning the log and keeping the ashes until the following year, it would ward off evil spirits during the long winter months. Download the recipe and teaching notes for free. Oh ho ho, and please do share your experiment highlights with us @IETeducation #SantaLovesSTEM
Make a gingerbread house
IETEducationIETEducation

Make a gingerbread house

(0)
Kids can create a delicious gingerbread house with this fun and easy baking recipe for beginners This fun and delicious recipe combines baking, engineering, and creativity! With this gingerbread house making project, children will have the opportunity to create their very own edible treat. This simple baking project for beginners provides a hands-on learning experience that explores the structural components of gingerbread house construction. Learners will examine the shapes and structures that contribute to the house’s overall stability, helping them develop a deeper understanding of engineering concepts. The engineering context Baking is engineering. Aspiring engineers can hone their science, maths, and technology skills through baking, as they use precision and creativity to engineer new and delicious treats. When it comes to making their gingerbread houses, children will need to channel their inner structural engineer to create a sturdy and eye-catching structure. The process of designing and building a gingerbread house requires careful consideration of the shapes, sizes, and placement of each piece, as well as the use of icing as a glue. Suggested learning outcomes This gingerbread house making activity offers a range of learning outcomes for students. In addition to developing baking and decorating skills, students will learn valuable STEM concepts related to structural engineering, including materials selection, load-bearing capacity, and stability. With guidance from their teacher or parents and our gingerbread house teaching activity overview, learners will have the opportunity to design and build their own gingerbread house, putting their newfound engineering skills into practice. By the end of this activity students will be able to design and make a gingerbread house and understand how to strengthen, stiffen and reinforce structures, gaining a deeper understanding of the principles of engineering. Download our free gingerbread house template and recipe A free gingerbread house template and recipe are available to download. They provide step-by-step instructions, a list of materials needed, and helpful tips for teachers and children alike. Oh ho ho, and please do share your baking and experiment highlights with us @IETeducation #SantaLovesSTEM
Build a marshmallow igloo
IETEducationIETEducation

Build a marshmallow igloo

(0)
Make a fun craft project and use your maths to find out about structures with this quick and easy marshmallow igloo. Igloos are built out of blocks of ice or snow by Inuit people living in the Arctic regions of Canada and Greenland. They were used as temporary shelters when people were hunting. No need to worry, we won’t be expecting people to go into the Arctic and carve blocks of ice, this one is going to be made out of marshmallows – yum! You’ll only need a few simple items to make this project, and it can be an edible experiment too. The magic of maths is hands-on fun this Christmas! What you’ll need: • Bag of mini marshmallows or bag of marshmallows • If you are making the buttercream icing, you will also need • 70g softened butter • 150g icing sugar Activity sheets and notes for teachers can be downloaded for free. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your homemade igloos with us @IETeducation #SantaLovesSTEM
Eggnog for the family
IETEducationIETEducation

Eggnog for the family

(0)
Make a non-alcoholic family friendly eggnog this Christmas, and learn about science and mixtures in this quick and easy festive recipe. Learn some amazing scientific facts while making this delicious, creamy Christmas treat - the magic of science is real-life fun! More recently, non-acholic eggnog has become a staple of Christmas celebrations, with Americans drinking over 58 million kilograms each year and Christmas Eve now being named National Eggnog Day. Ingredients needed: 500ml whole milk (swap for unsweetened almond milk if dairy-free or vegan) 200g caster sugar 100ml double cream (swap for full-fat coconut milk if dairy-free or vegan) 100ml water 4 egg yolks (swap for vegan vanilla pudding mix if vegan) 1 teaspoon vanilla paste (remove this ingredient if you are following the vegan recipe) Ice The engineering context Baking is engineering. It is using science, maths and technology skills to engineer and create solutions and new tasty products. Engineers need all these skills – precision in weighing out ingredients, the safety required in the kitchen and product design and quality engineering to test, taste and improve with each delicious creation! Download the free recipe and template! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your experiment highlights with us @IETeducation #SantaLovesSTEM
Create stained glass you can eat!
IETEducationIETEducation

Create stained glass you can eat!

(0)
Learn how to create colourful, edible stained glass and discover the science of light in this fun experiment for kids. What ingredients will you need? • 790g white, granulated sugar • 475ml water • 240ml light corn syrup • ¼ teaspoon cream of tartar • Food colouring (red or green) Download the free Edible stained glass activity sheet to learn the science behind this experiment! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Don’t forget to take photos of your edible stained glass and share them with us @IETeducation
Triangular numbers
IETEducationIETEducation

Triangular numbers

(0)
This maths activity uses triangular numbers to calculate the number of gifts in the 12 days of Christmas. In this festive maths activity, students will learn about triangular numbers and how, when a number sequence is added together, they can be drawn to make triangles as dots. They will also add together triangular numbers using a staircase and a formula to calculate any triangular number. This activity could be used as a main lesson activity to teach learners how to use addition and multiplication to solve practical problems. It could also be used as one of several activities within a wider scheme of learning, focusing on the use of maths to understand ratios and proportion. Activity: Triangular numbers This activity is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on the calculation of triangular numbers using the staircase method and the formula to calculate any triangular number n. We can use our maths knowledge to understand better how to solve problems involving addition and multiplication. As we handle money and make food for big parties of people, we learn how to use addition and multiplication in everyday life. How long will this activity take? This activity will take approximately 40-60 minutes to complete. Resources required Grid paper Pencils Erasers Rulers Calculators The engineering context Engineers need to know how many items are in a sequence. For example, production engineers in ice cream manufacturing need to know the number of double-scoop ice creams possible, given the number of flavours available. Triangular numbers are also used in a variety of other engineering calculations. For example, they can be used to calculate the number of steps in a staircase, the number of bricks in a wall, and the number of components in a circuit. Suggested learning outcomes By the end of this activity, students will know what a triangular number is, they will be able to calculate a triangular number using a staircase, and they will be able to calculate any triangular number (n) using a formula. Download the free Triangular numbers activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Puff pastry pizza swirls recipe
IETEducationIETEducation

Puff pastry pizza swirls recipe

(0)
Design and make puff pastry pizza swirls with a STEM twist. Puff pastry pizza swirls recipe - easy and fun to do with 4-11 year olds! This can be done as part of a food tech lesson or at home, as the activity is all mapped to the UK curricula for you - download for free below. This is one of a series of resources designed to allow learners to use the theme of celebration to develop their knowledge and skills in Design & Technology. This resource focuses on the designing and making of a food item to serve at a street party celebrating the occasion. This activity could be used as a main lesson activity to teach sketching design ideas and preparing food products for particular events. It could also be used as part of a wider scheme of learning to support focused practical skills within food lessons or – through measuring and weighing ingredients – to support the development of basic mathematical skills. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation
Gingerbread man STEM challenge
IETEducationIETEducation

Gingerbread man STEM challenge

(0)
Explore maths with gingerbread men, and find out how many combinations of buttons are possibilities. This is a simple maths game for KS1 and KS2 mathematics, as a curriculum mapped activity to do at school or home. This activity in partnership with MEI is a ‘finding all possibilities’ type of problem. It encourages children to work systematically to ensure they know when all the solutions have been found, as well as ensuring they haven’t made any two gingerbread men look exactly the same. A strategy that will be promoted is the idea of fixing one of the variables, in this case one of the buttons, whilst changing the others in turn. To ensure they become confident talking about their maths, ask the children to work in pairs if possible in a classroom or at home. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
KS2 times table cake challenge
IETEducationIETEducation

KS2 times table cake challenge

(0)
Get children thinking about combinations and KS2 times tables with this visual and hands-on activity for primary aged children. With a row of 24 cupcakes, what happens when every second cake has white icing and every third cake has a red smartie? Our lesson plan is mapped to the UK curricula and has all the notes to hand to guide you through the 45 minute resource as a classroom activity or at home. This activity in partnership with MEI could be used in Key Stage 2 as a stand-alone activity, as a focused task to develop problem solving skills, or as a consolidation task related to 3x,4x,8x multiplication facts. Pupils develop both their problem-solving and reasoning skills. They will also practice their mental recall of the 3x, 4x and 8x multiplication tables without the standard ‘fill out the multiplication table’. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.