Hero image

524Uploads

228k+Views

122k+Downloads

Seesaw scales
IETEducationIETEducation

Seesaw scales

(0)
Understanding levers and forces This STEM activity aims to develop children’s understanding of levers, specifically the seesaw class lever, one of the simplest forms of machine used to change the magnitude or direction of a force. Making a small seesaw model is a fun-filled way to introduce children to the concepts of levers and forces. By making simple levers, learners will grasp how the effort applied to a lever affects the load. This hands-on project not only sparks their curiosity but also encourages active learning. We’ve created this seesaw scale activity to support the teaching of key topics within design and technology (D&T), maths, and science as part of the primary national curriculum at key stage 2 (KS2). You can use it as a one-off activity or link it with a measurement activity in food technology. Activity: Making the lever Learners will make a simple lever assembly from a binder clip, ruler, two paper cups and sticky tape. Children will also be asked to use a lever to work out the force required to move a load. Learners will compare results and explain their findings. Depending on available resources, this activity could be carried out individually or in small teams. Tools/supplies needed: Rulers Large binder clips Paper cups Sticky tape Weights such as steel nuts, small weights from science or marbles The engineering context Engineers use their understanding of how the effort applied to a lever affects the load in designing a wide range of products. From weighing scales to control pedals in cars, nutcrackers, wheelbarrows, bottle openers, and scissors, levers find their application across various industries. By understanding the seesaw lever class, learners will gain a fundamental insight into the principles that govern these everyday objects. Suggested learning outcomes Through this activity, learners will gain the ability to identify the parts of a lever and understand how the effort applied to a lever affects the load. They’ll also understand the principle of balance in a seesaw lever and how distance from the fulcrum impacts the effort needed to move a load. This will equip them with the foundational knowledge about levers, a key component in KS2 science, and provide a practical context for understanding mathematical concepts like multiplication and equality. Download our activity sheet and other teaching resources for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so that you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation
Gingerbread man STEM challenge
IETEducationIETEducation

Gingerbread man STEM challenge

(0)
Explore maths with gingerbread men, and find out how many combinations of buttons are possibilities. This is a simple maths game for KS1 and KS2 mathematics, as a curriculum mapped activity to do at school or home. This activity in partnership with MEI is a ‘finding all possibilities’ type of problem. It encourages children to work systematically to ensure they know when all the solutions have been found, as well as ensuring they haven’t made any two gingerbread men look exactly the same. A strategy that will be promoted is the idea of fixing one of the variables, in this case one of the buttons, whilst changing the others in turn. To ensure they become confident talking about their maths, ask the children to work in pairs if possible in a classroom or at home. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Edges, vertices and faces
IETEducationIETEducation

Edges, vertices and faces

(0)
Making cut-out 3D shapes and counting the number of edges, vertices and faces In this fun maths activity for Key Stage 2, learners will enhance their knowledge and comprehension of 3D shapes. They will cut out 2D nets for a cube, pyramid, cylinder, and octahedron, then fold them to form their corresponding 3D shapes. Through this process, they will also determine and count the number of edges, vertices, and faces on each shape. This activity can serve as a main lesson to develop an understanding of the characteristics of common 3D shapes. Alternatively, it can be integrated into a broader curriculum that focuses on the properties of 2D shapes, 3D shapes, and everyday objects. The engineering context Engineers must regularly use mathematics knowledge and skills as part of their everyday job. Therefore, they must have a good grasp of basic concepts, such as the properties of 3D shapes. Suggested learning outcomes By the end of this activity, students will be able to make 3D shapes such as cubes, pyramids, cylinders and octahedrons from 2D nets, and they will understand the difference between the edges, vertices and faces of a 3D shape. They will know the number of edges, vertices and faces on a cube, pyramid, cylinder and octahedron. Download for activity sheets and templates for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Population growth
IETEducationIETEducation

Population growth

(0)
Discussing how engineering can support urban growth This activity provides a quick, engaging introduction to a lesson, focusing on the link between sewage and the underground tunnel system. It encourages students to think about the role of engineers in providing us with healthy sanitation and waste-water disposal systems. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science, geography, engineering or design and technology (DT). Activity: Discussing how engineering can support urban growth Students will investigate sewage tunnels that are being built under London by first watching our Shifting sewage film. Students will then consider how society has changed over time, to identify the influences that have resulted in the needs for the new tunnel. Download our activity overview for a detailed lesson plan on the engineering challenges that come with population growth. The engineering context As cities like London grow, the need for expanded sanitation systems need to be considered for the removal of urban waste. This can present logistical challenges as there will often be an existing waste tunnel system, along with transport networks such as the London underground, causing complexity. Engineers will therefore need to carefully consider several factors for new engineering projects that support population growth including geology, environmental impact, available technology, local disruption (and the political considerations that come with that) along with the existing infrastructure. Suggested learning outcomes By the end of the lesson students will appreciate the issues around developing new tunnel systems in their location. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including video clips), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Measuring noise
IETEducationIETEducation

Measuring noise

(0)
Measuring the amount of noise produced by different activities. In this activity learners will measure noise produced by a range of activities using a sound meter to help them understand how noise is measured and that high noise levels can damage our hearing. This activity could be used as a main lesson activity to teach learners about sound, as part of a scheme of learning covering sound waves and how sound is generated or as part of a wider topic area covering health and safety considerations in the workshop. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Times table bingo
IETEducationIETEducation

Times table bingo

(0)
**In this thrilling times table bingo game, we combine the excitement of bingo with the challenge of mastering multiplication. ** Students race against the clock to quickly identify the correct number on the bingo cards as the teacher calls out different multiplication problems to solve. They need to be prepared to think fast and strategise to complete lines and patterns or even achieve a full-house victory! Whether a beginner or a times table whiz, this game is an entertaining way to reinforce time tables knowledge. Activity This activity is one of a series of accessible STEM resources to support teaching the primary national curriculum and key topics within maths and science. In this activity, learners will solve a series of multiplication problems read out by the teacher. They will use these answers to play bingo, aiming to complete their given card with their responses; this will improve and reinforce learners’ multiplication skills in a fun and engaging context. Learners could play in small teams, pairs or as individuals. Students who win each round of the game could win a prize as a reward and an incentive to other learners. This multiplication bingo game could be used as a starter activity covering learning from a previous lesson, a plenary exercise reinforcing learning that has just occurred, or as one of several activities within a wider scheme of learning focusing on multiplication and division. How long will this activity take? This activity will take approximately 25-40 minutes to complete. Download the free handouts below for step-by-step guides and printable bingo cards. Suggested learning outcomes By the end of this activity, students will be able to multiply numbers together using the 2-, 5- and 10-times tables, they will be able to solve multiplication problems using mental arithmetic, and they will be able to use correct mathematical statements and terminology relating to multiplication problems. The engineering context Engineers must use mathematics knowledge and skills regularly as part of their job. For example, calculating the strength of a material, the speed of a vehicle, the sizes of products or quantities of parts needed. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Easy cookie recipe - KS1 maths: Scaling and ratios
IETEducationIETEducation

Easy cookie recipe - KS1 maths: Scaling and ratios

(0)
This resource focuses on developing the understanding of ratio, fractions and scaling, by scaling up ingredients in a recipe. It could also be linked to learning in food technology, to demonstrate a practical application of maths. In this activity, students will embark on a delicious culinary adventure as they learn to expand an easy cookie recipe to create larger batches. Scaling up a recipe requires careful calculation and understanding of ingredient proportions and ratios, making it a perfect opportunity to enhance mathematical skills while indulging in the sweet rewards of baking. Suggested learning outcomes By the end of this activity, students will be able to solve a scaling-up problem involving a recipe using maths skills. The engineering context Food engineers are employed in food processing, machinery, packaging, and ingredient manufacturing. When a new food product, e.g., a breakfast cereal, has been developed, they may have to plan to scale up the production to make thousands of boxes of it each day. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your baking highlights with us @IETeducation
Measuring time - KS1 maths
IETEducationIETEducation

Measuring time - KS1 maths

(0)
In this engaging experiment, students will learn how to measure time by recording the time it takes to complete a walking race where the winner is the last person to cross the line, not the first! This resource is part of a series created to support the primary national curriculum. Its purpose is to aid in teaching essential topics in mathematics and science. Activity In this particular activity, students will participate in a slow walking race and measure the time it takes to complete it. Working in small teams, they will use stopwatches to time each other and record the data. The collected results will be organised and discussed as a class, using terms such as faster, slower, and quicker. This activity serves as a central lesson to teach students how to gather data through measurement and apply their numerical skills in a practical setting. It can also be utilised as one of several activities within a broader learning framework emphasising using mathematics and science to comprehend time measurement. This activity is suitable for groups of 4 or more participants and can be conducted in various settings such as the classroom, hall, or outdoors. The distance for the slow walk race can be adjusted to accommodate the available space, with a recommended length of 5 meters. It is ideal to mark the start and finish lines using tape or any suitable material within the available space. Before starting the activity, ensure that the learners understand how to properly operate the stopwatches, including starting, stopping, and resetting functions. The teacher should provide a demonstration in advance to ensure clarity. How long will this activity take? This activity will take approximately 40-60 minutes to complete. Download the activity sheet below for a step-by-step lesson plan. The engineering context Accurate timing plays a crucial role for robotics engineers. They must determine the speed range at which two-legged robots can walk without losing balance. These engineers design robots to assist astronauts in space missions and perform demanding tasks like heavy lifting in factory settings. Suggested learning outcomes By the end of this activity, students will be able to measure the time it takes to finish a race, they will be able to sort and compare time data, and they will be able to use the terms faster/slower to describe the time result of the race. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Water consumption
IETEducationIETEducation

Water consumption

(0)
Learn how mathematicians predict UK’s future water usage In this activity students will explore water consumption by looking at mathematical modelling and its real-world application in predicting water usage. Students will estimate their daily water consumption, interpret complex data, and apply their mathematical skills to understand why water usage is a significant issue. This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design & technology (DT). This lesson plan follows on from Water Conservation and continues the theme of water usage developed in the Sewage Tunnels activity but can be delivered independently should the teacher wish. Activity: Comparing water usage within the UK to that of other countries In this activity, students start by estimating their daily water usage. They then delve into complex data from the Environment Agency, interpreting different scenarios and their potential impact on future water requirements. Students will develop their own spreadsheet tool, inspired by the one on the Southern Water website, to help others estimate their water usage. They’re encouraged to improve upon the existing tool and even write to the Water Board with their suggestions. Download our activity overview, presentation and worksheet for a detailed lesson plan for teaching students about water consumption. We also have a class quiz. The engineering context This activity highlights the intersection of mathematics, science, policy-making, and engineering in addressing real-world problems. By engaging in this activity, students will understand how engineers use mathematical models to predict future scenarios and develop solutions for sustainable water usage. They’ll see first-hand how engineering can make a significant impact on society and the environment. Suggested learning outcomes This lesson plan is designed to equip students with the ability to analyse and interpret a wide range of data, understand the application of mathematical modelling in real-world situations, and use their mathematical knowledge to review, recreate, and improve presented information. Students will also gain insights into the importance of water conservation and the challenges in meeting increasing water demands. Download our activity sheet for free! The lesson plan includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity worksheets and supporting lesson plan resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Density using Archimedes' principle
IETEducationIETEducation

Density using Archimedes' principle

(0)
Work out the density of materials This activity for primary kids gives them an opportunity to work out the density of a material using Archimedes’ principle, an ancient Greek mathematician. Combining maths and science, students will learn how to collect data through experimenting and understand the properties of materials. This activity will test students’ number abilities and teach them historical facts about ancient Greece. Resources are provided for teachers. And please do share your classroom learning highlights with us @IETeducation
Using Pythagoras Theorem
IETEducationIETEducation

Using Pythagoras Theorem

(0)
Use Pythagoras Theorem to measure objects In this activity for kids, students will be introduced to the concept of the Pythagoras Theorem and what it is used for. They will use this knowledge to create a string triangle in the proportion of 3:4:5 and use it to measure objects from their base. This activity will test students’ maths abilities and teach them historical facts about ancient Greece. Resources for teachers are available. And please do share your classroom learning highlights with us @IETeducation
Calculate journey times
IETEducationIETEducation

Calculate journey times

(0)
An activity to compare journey times for different modes of transport In this fun activity for KS1, learners will calculate the times taken to complete the same journey using different modes of transport, allowing them to put their math skills into practical use. This activity is part of a collection of STEM resources developed to aid the teaching of the primary national curriculum. Its purpose is to assist in delivering essential topics within mathematics and science. This could be used as a one-off main lesson activity to develop basic maths skills in context. Learners will be given the “Who’s Fastest” activity sheet to complete. They will calculate the journey times for each mode of transport and rank them from fastest to slowest. After completing the calculations, the class will engage in a discussion. They will explore which mode of transport emerged as the fastest and why it held that position. Furthermore, they will consider which transport mode they would prefer to use for the given journey and explain their reasoning. By the end of this activity, the learners will have gained a deeper understanding of the relationship between distance, speed, and time while also having fun comparing different modes of transportation. The engineering context Comparing results is crucial in engineering as it aids in enhancing efficiency. Different modes of transportation have varying impacts on the environment. Consequently, a transport engineer’s task involves determining the most suitable transportation method for specific situations, such as employing trams in a city. Suggested learning outcomes By the end of this activity, students will be able to solve a contextual problem using division and multiplication, and they will be able to understand how to calculate different journey times for alternative modes of transport. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Comparing the carbon footprint of transportation
IETEducationIETEducation

Comparing the carbon footprint of transportation

(0)
A maths-based challenge for KS3 to calculate the journey times and carbon footprint of different methods of travel As well as testing students’ mathematical abilities, this activity highlights the issue of sustainable travel and the effects of some modes of transport on the environment. This could be used as a one-off main lesson activity to use maths skills in context, or as part of a scheme of work on sustainability, to build knowledge and understanding of climate change and ways of reducing it. Activity introduction This activity is one of a series of resources designed in conjunction with Network Rail to develop understanding and skills in key maths, science, and engineering concepts. The carbon footprint data in the presentation is derived from passenger-specific figures published by BEIS/Defra Greenhouse Gas Conversion Factors 2019. Transportation speeds are approximations based on typical values obtained from commonly used search engines. Any statistical or speed-related data used in this activity serves its sole purpose within the activity and may not accurately mirror current real-world conditions. Variability might arise due to seasonal changes, environmental conditions, or legal constraints. When utilising the activity sheet, students can construct tables for each journey, showcasing their findings (as depicted on the sheet). For air travel, a buffer of 3 hours should be allotted to account for check-in, security procedures, and boarding at airports. To add an additional layer of complexity, transit times to airports and railway stations could be incorporated. The presentation includes supplementary slides for those who prefer kilometres instead of miles. The engineering context Engineers must understand how products impact the environment; This pertains not only to modes of transportation but also encompasses the production of new items. They can use this knowledge to balance the environmental impact with the function carried out by the product. Engineers can also develop new or improved Suggested learning outcomes By the end of this activity, students will be able to solve a contextual problem using division and multiplication, and they will understand how to calculate journey times and the carbon footprint for alternative modes of transport. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
How high will it go?
IETEducationIETEducation

How high will it go?

(0)
Find the height achieved by a flying object using trigonometry. In this activity learners will work out the height of a released balloon using a clinometer and trigonometry. This is one of a series of resources designed to allow learners to use the theme of the future of flight to develop their knowledge and skills in in Design and Technology, Engineering and Mathematics. This activity could be used as a main lesson activity to teach learners about the practical application of trigonometry. It could also be used as part of an introduction to the use of trigonometry within engineering. You will need: Thin card Balloons Balloon pump, if required Brass split pin paper fasteners Scissors Sharp pencils and erasers Calculators Tape measure All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Flying high
IETEducationIETEducation

Flying high

(0)
Calculating the amount of energy needed to launch a rocket into space. In this activity learners will make use of the theme of the future of flight to calculate the amount of energy needed to launch a space rocket. They will discuss the meaning of the term escape velocity and then perform calculations based on the Space X and Saturn V rockets. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Create a map of local flora and fauna
IETEducationIETEducation

Create a map of local flora and fauna

(0)
Gather information about local flora and fauna and create a map with coordinates showing the location of plants and animals In this engaging activity for KS2, students will work in groups to collect information about the flora and fauna in their area. They will then create a map that displays the location of these plants and animals using coordinates. This is one of a set of free STEM resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource combines understanding of the natural world with maths skills, to create a map and guidebook of the local flora and fauna. A fun and practical exercise in which students will take real measurements of the area and use grid paper to create a scale representation. Additionally, students will incorporate digital photographs or drawings of the flora and fauna to create informational pages for the guidebook. For optimal results, it is advisable to conduct this activity in small groups. Selecting a suitable location is crucial, which could be the school grounds, nearby park, or other accessible area such as a local forest. It may be best if only one team member produces the map, and the other focus on measurement and describing the observed flora and fauna. The flora and fauna could include plants, trees, observed birds and wildlife and insects. This activity will take approximately 80-120 minutes to complete. Tools/resources required Access to an appropriate outside area with flora and fauna Pencils Rulers Clipboards Digital cameras Grid sheets to map the local area Tape measures Chalk Glue sticks or sticky tape The engineering context Environmental engineers across the globe engage in the mapping of flora and fauna to monitor changes in the natural world. Their research spans a variety of areas, including the impact of deforestation in the Amazon, the effects of climate change in the Polar regions, and the consequences of flooding in Asia. Suggested learning outcomes By the end of this activity students will be able to draw a map, they will be able to plot the positions using coordinates and they will be able to create, identify, and describe flora and fauna. Additionally, they will be able to use SI units for lengths/distances and they will be able to measure an area and scale it onto a map. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Tally chart activity
IETEducationIETEducation

Tally chart activity

(0)
In this interactive and engaging activity, students will create a tally chart to collect data and discover the most popular colours in the class. Get ready to observe, count, and tally as you learn more about your classmates’ colour preferences. By the end of this activity, you will not only have a beautiful visual representation of your classes’ favourite colours, but you will also develop your data collection and analysis skills. Activity This activity is one of a set of free STEM resources developed to support teaching the primary national curriculum and key topics within maths and science. In this activity, learners will produce a tally chart of favourite colours in a class. They will split into groups and go around to the other learners in the class, recording their favourite colours in their chart. They will then add up the totals and discuss their results. This activity could be used as a main lesson to develop knowledge and understanding of recording and displaying data methods or as part of a wider scheme of learning focusing on statistics. It could also be used as a starting point for learning based on the use of colour in Design & Technology. How long will this activity take? This activity will take approximately 40-60 minutes to complete. Why do we use tally charts? Tally charts are used to collect and organise data visually. They provide a quick and efficient way to record and count occurrences or responses. Tally charts help simplify data collection, making it easier to analyse and interpret information and identify patterns or trends. The engineering context Transport engineers use tally charts to record how many vehicles, and of what types, pass through road junctions or along busy roads; this helps them to plan the timings of traffic lights and identify routes where changes are needed. Engineers need an understanding of colour when producing aesthetically pleasing solutions for clients. Suggested learning outcomes By the end of this activity, students will be able to construct a tally chart to record and analyse data about their favourite colours. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Magic Square puzzles
IETEducationIETEducation

Magic Square puzzles

(0)
This engaging magic square puzzle activity for KS1 delves into the realm of number arrangements and challenges students to uncover the magic hidden within these intriguing square grids. This activity is one of a set of free STEM resources developed to support teaching the primary national curriculum and key topics within maths and science. This resource focuses on developing the ability to add numbers using Magic Square grids. This activity could be used as a starter or main activity to introduce maths problem solving using addition. Learners could complete it in pairs or small groups. Although this activity is designed to be carried out in a playground (which has the advantages of scale and allows chalk to be removed), it could equally be done on paper in a classroom. How long will this activity take? This activity will take approximately 35-60 minutes to complete. Download the worksheets below for a handy step-by-step guide and lesson plan. What are magic squares? Magic squares are intriguing mathematical arrangements of numbers within a square grid, where the sum of the numbers in each row, column, and diagonal is the same. Each number is unique within the square, and the challenge lies in finding the right arrangement to achieve the magical property. Magic squares have a long history dating back to ancient times and have captivated mathematicians and enthusiasts alike. They possess symmetrical and symmetrically complementary patterns, adding to their aesthetic appeal. Magic squares can vary in size, from 3x3 grids to larger ones, presenting a wide range of complexity and opportunities for exploration within recreational mathematics. The engineering context Engineers need to solve several puzzling problems when designing products. For example, chemical engineers must determine the amount and combination of ingredients required to create tasty and effective toothpaste. Suggested learning outcomes By the end of this activity, students will be able to solve Magic Square problems using addition, they will be able to add small numbers by mental arithmetic, and they will be able to create Magic Square grids of varying sizes and difficulty. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to calculate density
IETEducationIETEducation

How to calculate density

(0)
Finding the density of materials by weighing items and immersing them in water This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on understanding density and, through a series of practical tests, working out which materials are low and high density. Activity info, teachers’ notes and curriculum links In this activity learners will learn about the density of materials through testing. Learners will have an opportunity to weigh and work out the volume of an object. They will use this information and their number skills to calculate the density. They will then repeat this for other objects and discuss their results as a class. This activity could be used as a main lesson activity, to teach learners how to collect data through measurement and to use number skills in a practical context. It could also be used as one of several activities within a wider scheme of learning focusing on the use of maths and science to understand the properties of materials. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your learning highlights with us @IETeducation
How to work out scale
IETEducationIETEducation

How to work out scale

(0)
Scaling activity to change the size of items In this activity learners will change the scale of items, by doubling or halving the size and drawing them to a new scale. Learners will be shown that multiplication and division are useful methods to change the scale of an item. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on the use of multiplication and division in the context of scaling an item to either double or half its size. This activity could be used as a main lesson activity to teach learners how to work out scale or to reinforce understanding of multiplication and division. It could be used as one of several activities within a wider scheme of learning focusing on the use of maths to understand ratio and proportion. It could also support the development of drawing skills in art. The engineering context Structural engineers collaborate with architects to design various structures, such as houses, hospitals, office blocks, bridges, oil rigs, ships, and aircraft. They create scaled-down drawings for each of these structures. Suggested learning outcomes By the end of this activity, students will know how multiplication and division can be used to work out scale, they will be able to scale drawings back to their original size by either scaling up or scaling down, and they will be able to solve simple problems in scaling contexts, i.e. two times larger and two times smaller. Download the activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation