524Uploads
213k+Views
114k+Downloads
Physics
Daylight hours maths activity
In this fun maths activity, students will look at the way the length of the day changes over the year.
They will use a data sheet to plot a graph, then interpret the data to work out the date of the longest and shortest days of the year in the United Kingdom.
A free activity sheet can be downloaded.
And please do share your poetry highlights with us @IETeducation! #SantaLovesSTEM
Design a jetpack
Consider how a jetpack works and sketch an idea for a wearable jetpack
In this activity learners will make use of the theme of football on the moon to design a jetpack that can be worn by either the players or referee during a moon football game. They will look at jetpack design and the different parts of a jetpack. They will then sketch an idea for a wearable jetpack for use during the game.
This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Science, Design & Technology and Engineering. This resource focusses on learners looking at jetpack aviation to design a jetpack that the players or referee can use during a game of football on the moon.
The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before introducing and explaining how a jetpack works. Learners will then have time to go through the design brief and sketch their design ideas before reporting back to the class in an informal style or as part of a formal presentation.
This activity can be simplified (particularly for less able students) by providing sentence starters for annotations/labelling of sketches and/or providing templates for learners to draw around, such as images of the referee and players.
As an extension learners can make a life size model of the jetpack or design a spacesuit to be work by the players and/or referee.
This activity is designed to take between 50-80 minutes.
The engineering context
Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit?
Suggested learning outcomes
By the end of this free resource students will be able to design a wearable jetpack for a game of football on the Moon; know the different parts of a jetpack; and understand how jetpacks function and the technology needed to make them work.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Build a communication system for the moon
Learn about how electronic intercom circuits can help players communicate
In this activity students will gain an understanding of how soundwaves travel and are received to allow them to be heard in the ear. Building on students pre-existing knowledge of circuits this activity focusses on how football players on the Moon could communicate to each other using electronics. Students then apply their skill to build an intercom circuit.
This resource uses the theme of football on the Moon to allow learners to develop their knowledge and skills in design & technology, mathematics and science. In this activity learners will use the theme of football on the Moon to learn about how electronic intercom circuits can help players communicate.
The teacher will introduce the activity and explain how sound waves allow us to hear. The teacher will then discuss the problems communicating on the Moon and explain why an electronic circuit is necessary. Learners will then have the opportunity to manufacture and test their own intercom.
This activity can be simplified (particularly for less able students) by placing components onto the PCB/stripboard prior to soldering and/or using helping hands to hold PCB/stripboard in place.
As an extension learners can research what methods could be used to make the intercom wireless.
This activity is designed to take between 40-60 minutes.
Tools/resources required
Paper cups and string
Sharp pencils and sticky tack
Electronic components (see PPt list on slide 7)
Soldering irons and stands
Helping hands
Wire strippers and cutters
Lead free solder
PCB making kit
Tracing paper to print PCB mask
Stripboard (see PPt slides 16-18)
Stripboard track cutters
The engineering context
Engineers create and develop communication systems for numerous activities that take place in very different environments. For example, deep sea divers need to communicate underwater and armed forces have to communicate in all weather conditions.
Suggested learning outcomes
By the end of this free resource students will be able to understand how hearing works translating sound waves; understand how sound waves can travel through string by vibration and wire by electrical signal; and be able to build an intercom circuit.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Explore electrical resistance
Testing the electrical resistivity of different materials
In this activity learners will make use of the theme of electrical resistance to experiment with an electronic circuit. They will learn how to use an electronic multimeter and will then apply their skills to test the electrical resistivity of various materials.
This activity could be used as a main lesson activity to teach about resistors and their use. It could also be used as part of a wider scheme of learning focussing on the selection of materials for different applications.
This is one of a series of resources developed in association with the National Grid ESO, to allow learners to use the theme of electronics to develop their knowledge and skills in Design & Technology and Science. This resource focusses on practical experiments investigating the resistance of different materials. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day.
The teacher will explain what is meant by resistance and then explain the task to the learners through a series of practical hands-on activities. At the end of the session the teacher will get the learners back together to discuss their findings.
This activity can be simplified (particularly for less able students) by setting up the multimeter in advance to the correct range before handing to learners.
This activity is designed to take between 45-70 minutes.
Tools/resources required
Multimeters (digital or analogue)
Assorted resistors, including 33kΩ
Breadboards
Crocodile clips
Pencils and paper
Glass of water
Table salt
Selection of materials (for the extension activity)
The engineering context
Many components, such as integrated circuits, can be damaged by high current. An understanding of resistance allows electrical engineers to select resistors to protect these components, ensuring the effective and continued operation of the electronic devices.
Suggested learning outcomes
By the end of this free resource students will be able to choose materials based on their resistivity; understand the basics of resistance; and be able to use electronic devices to measure resistance.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Test out Galileo’s gravity experiment
Investigating velocity and acceleration down a slope
In this fun STEM activity for kids, learners will discover how to write numbers in hieroglyphics.
This free resource is aimed at primary school children and could be used as a main lesson activity, to teach learners about the works of the ancient Egyptians contributing to learning in design and technology, history, and mathematics or as an alternative method of reinforcing learning in basic numeracy.
Additionally, this could be used to start a discussion on ancient Egypt or to introduce the concept of people using different languages. It could also be used in conjunction with other activities in this theme, ‘Making Papyrus’ and ‘Write like an Egyptian’.
This is one of a set of resources designed to allow learners to use practical methods to support the delivery of key topics within design and technology, history, and mathematics. This resource is based on the use of Hieroglyphics for mathematical activities by the Ancient Egyptians.
Using hieroglyphic symbols, learners will write down three numbers with values between 1,000 and 10,000,000. They will then swap their numbers with a peer. Can they tell each other the correct values of the numbers?
A free presentation for teachers is provided. The presentation includes a slide showing how the ancient Egyptians represented fractions using hieroglyphics, which could be used for extension work. Additionally, learners could write and solve maths problems using hieroglyphics.
This practical and engaging activity will test students’ maths abilities as it challenges children to think about the value of numbers, rather than just processing stated values.
Tools/resources required
A length of channel or guttering
A tape measure
A protractor
A stopwatch
The results table
A pen or pencil
An egg (plastic or boiled or solid)
Weighing scales (for extension activity 2 only)
The engineering context
An understanding of numbers is vital for engineers to solve lots of interesting problems. For example, factories need to know the quantity of materials in order to make their products and farmers need to know how much food to produce.
Suggested learning outcomes
By the end of this exercise students will know what Hieroglyphics are, they will be able to use Hieroglyphics to represent numbers of values up to 10,000,000 and they will be able to carry out basic numeracy functions.
Download the free Galileo’s gravity experiment activity sheets, including teacher notes, presentation and curriculum links along with a bonus wordsearch using words from the activity to enhance learning.
Wheel materials
Testing materials to see which material is the most suitable for a wheel
This resource has been developed with the support of the Bugatti Trust Museum and Study Centre and focuses on testing materials to see which material is the most suitable for a wheel using Engineering and Math’s skills.
Ettore Bugatti was the founder and designer of Bugatti sports cars. He was the first designer to use aluminium wheels to decrease the weight of Grand Prix racing cars, designing one of the most successful racing cars in the world.
Activity info, teachers’ notes and curriculum links
In this activity learners will test various discs made from different materials to see how they perform as a wheel.
This activity could be used as a main lesson activity to teach learners about the physical properties of materials or approaches to testing in the context of practical applications. It could also be used as part of an introduction to the practical use of numeracy within engineering.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
• Discs of material, 140 mm diameter with a 10 mm central hole; for example, steel, aluminium, acrylic, plywood
• Metal bar or pipe, 8-10 mm diameter
• G clamps or vices
• Masking tape
• Weights – various, 250 g to 1 kg
• Stopwatch
• Calculators
• Rulers and writing implements
• Optional: scales to weigh the discs
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
How high will it go?
Find the height achieved by a flying object using trigonometry.
In this activity learners will work out the height of a released balloon using a clinometer and trigonometry. This is one of a series of resources designed to allow learners to use the theme of the future of flight to develop their knowledge and skills in in Design and Technology, Engineering and Mathematics.
This activity could be used as a main lesson activity to teach learners about the practical application of trigonometry. It could also be used as part of an introduction to the use of trigonometry within engineering.
You will need:
Thin card
Balloons
Balloon pump, if required
Brass split pin paper fasteners
Scissors
Sharp pencils and erasers
Calculators
Tape measure
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Hydrogen power
How to make hydrogen from water.
In this activity learners will make use of the theme of the future of flight to investigate one of the potential energy sources of the future. They will discuss the problems associated with the use of oil-based fuels and how the use of hydrogen fuels could solve them. They will then produce hydrogen from water and investigate ways to make it work better.
This activity could be used as a main lesson to teach about power supplies and renewable energy within a transport context. It could also be used as part of a wider scheme of learning to teach about sustainability and environmental issues.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Measuring noise
Measuring the amount of noise produced by different activities.
In this activity learners will measure noise produced by a range of activities using a sound meter to help them understand how noise is measured and that high noise levels can damage our hearing.
This activity could be used as a main lesson activity to teach learners about sound, as part of a scheme of learning covering sound waves and how sound is generated or as part of a wider topic area covering health and safety considerations in the workshop.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Flying high
Calculating the amount of energy needed to launch a rocket into space.
In this activity learners will make use of the theme of the future of flight to calculate the amount of energy needed to launch a space rocket. They will discuss the meaning of the term escape velocity and then perform calculations based on the Space X and Saturn V rockets.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Market research on colour and mood
Designing a questionnaire that informs product design
Engineers play a key role in our everyday lives, often in ways we may not realise. Take the Watt Nightclub in Rotterdam as an example - engineers have designed a system that turns the energy created by dancing into power for the lighting. Even the colour of the lights was a consideration.
In this activity, students will explore the relationship between colour and mood, and how it might impact the amount of electricity generated on a dance floor.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design and technology (DT).
Activity:
The activity begins with a class discussion on whether colour can scientifically affect mood.
Students will then learn about the role of questionnaires in research, including what makes a good questionnaire and what factors need to be considered when designing one. The class will watch the Dance Power film, which directly relates to this technology, and then split into groups to create their own questionnaires. These will be tested, evaluated, and refined before being conducted as homework.
Students will process and present their findings, considering the reliability and accuracy of their evidence. They’ll discuss their results and the effectiveness of questionnaires as a research tool.
The engineering context
Market research is essential for engineers working in product design, providing valuable insights into consumer needs and preferences, enabling them to create innovative products that meet market demand and improve user satisfaction.
Furthermore, by exploring how engineers can use colour to influence mood and hence energy production, students will gain an insight into the creativity and problem-solving involved in engineering.
Suggested learning outcomes
Through this activity, students will gain an understanding of the scientific method, specifically the design and implementation of a market research questionnaire. The class will develop the ability to generate scientific evidence to prove a hypothesis, in this case, the relationship between colour and mood. They will also consider what constitutes sufficient evidence for scientists to confirm a hypothesis.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
Please do share your highlights with us @IETeducation.
Analyse energy consumption data
Use data on energy consumption to investigate how average values are calculated
This scheme of work is designed to enable students to explore the relevant issues of energy cost and efficiency. Learners will use functional mathematics to understand that published facts and figures may not always be accurate, and that mathematical insights are necessary to scrutinise data.
In this engaging activity for KS3, students will analyse data related to electricity consumption, with a focus on how average values are determined. Students will also evaluate the accuracy of published data sources and consider potential biases. This resource would work well as a main lesson in maths.
This activity uses data for England. Students in Wales, Scotland, or Ireland may wish to research data for their areas.
To begin the activity, prompt students to create a list of the various types of housing that individuals reside in. Which type of house is likely to require the most energy?
Provide students with the Resource Sheet handout, which displays typical yearly electricity bills for different housing types. Students should collaborate in groups of 2-4 to review and analyse the data, and answer the questions included on the resource sheet.
Students should be encouraged to reflect on the meaning of this data rather than just accepting it at face value – can they find raw figures and do the calculations to support the information shown?
The engineering context
Energy efficiency refers to the use of less energy to perform a specific task or achieve a particular outcome. In other words, it is the ability to accomplish the same level of output using less energy input. Energy efficiency can be achieved through the use of more efficient technologies, equipment, or processes, as well as through changes in behaviour and practices. It is an important concept in the context of sustainable development, as it helps to reduce energy consumption and greenhouse gas emissions, conserve natural resources, and lower energy costs.
Examples of energy-efficient practices include using energy-saving light bulbs, improving building insulation, and upgrading to energy-efficient appliances.
Suggested learning outcomes
By the end of this activity students will understand that mathematics is used as a tool in a wide range of contexts, and they will be able to use mathematics to interpret the impact of energy costs on society.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
What is energy efficiency?
Use mathematics to investigate the topical issue of the cost and efficient use of energy
This engaging activity for KS3 seeks to teach students how to use mathematics to investigate the topical issue of the cost and efficient use of energy. This is a thought-provoking exercise that will teach students to think about sustainability and develop their understanding of mathematical modelling.
In this activity students will investigate the topical issue of the cost and efficient use of energy. Using functional mathematics, they will recognise that published facts and figures are not necessarily accurate and that mathematical insight should be used to probe data.
As an optional extension activity, students could quantify how energy is used for heating within a dwelling. The quantification could be in terms of units of energy and/or cost. They could then find comparable data for one or more dwellings of different design, for example of different sizes, of radically different design (e.g. flats vs. detached houses), or dwellings designed to be eco-friendly. They should analyse the differences in energy performance identified.
This is a quick and simple activity that will take approximately 15 – 30 minutes to complete.
Tools/resources required
Projector/Whiteboard
The engineering context
Energy efficiency refers to the use of less energy to perform a specific task or achieve a particular outcome. In other words, it is the ability to accomplish the same level of output using less energy input. Energy efficiency can be achieved through the use of more efficient technologies, equipment, or processes, as well as through changes in behaviour and practices. It is an important concept in the context of sustainable development, as it helps to reduce energy consumption and greenhouse gas emissions, conserve natural resources, and lower energy costs.
Examples of energy-efficient practices include using energy-saving light bulbs, improving building insulation, and upgrading to energy-efficient appliances.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Is remote surgery safe?
Identify the advantages and disadvantages of remote or robotic surgery
Telemedicine is a new and fast developing field in healthcare. Even 20 years ago the idea of a surgeon being able to operate a robot from hundreds of miles away in order to perform an operation seemed like science fiction.
Today, this is not only possible but engineers, working with scientists and doctors, are now designing robotic systems which will be able to operate on patients with no human intervention at all.
Activity info, teachers’ notes and curriculum links
In this activity, learners will explore the impact of modern technology on science, using telemedicine and robotics as a context.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Which medical imaging technique? - Practical
Investigate aspects of biomedical signal processing
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Activity info, teachers’ notes and curriculum links
In this practical session students investigate aspects of signal processing. Working in teams, students convert an analogue brain signal into a digital format and transmit it across the classroom to another team using flashes from the LED on the Digital Communicator that they will need to build. The other team will record the digital format and rebuild the original waveform from that information.
This activity can be used as a hands-on extension to the ‘Which Imaging Technique?’ activity (see Related activities section below).
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Materials for a robotic arm
Investigate the properties of smart springs and see how they might be used as muscles in a robotic arm
This fun engineering activity encourages students to investigate prosthetic materials and the properties of smart springs and see how they could be used as muscles in a robotic arm.
This is a free resource aimed at secondary school students. This activity encourages students to investigate the properties of smart materials and carry out some data manipulation. Students will also explore the possible moral and ethical issues associated with people potentially choosing to replace healthy body parts with artificial prostheses because they offer higher performance.
This exercise should take around an hour to complete.
Resources required for class:
Several desk fans should be available but kept out of sight of the students until needed.
Resources required per team:
Wooden ‘arm’ as shown in the diagram on the handout below. These will need to be constructed in advance of the lesson. This could be done either by the science technician or by the students themselves as part of a joint project with design and technology.
1 to 1.5 mm diameter copper or other fairly flexible metal wire. Must be stripped of insulation
A smart spring made from a shape memory alloy such as nitinol
Power supply, leads, crocodile clips
Retort stand
Ammeter
Voltmeter
Sets of slot masses of various sizes
The engineering context
The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts.
Suggested learning outcomes
By the end of this activity learners will be able to explain why a material is chosen for a use based on its properties, they will be able to describe how smart materials are used in a real life context and they will be able to use and manipulate material-related data.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Reading maps and scale drawings
Work out how to reach destinations using a scale map
In our daily life we take 21st-century technology for granted. Some could argue that we aren’t developing basic skills, as technology often does the work for us. When the technology fails, however, the absence of some necessary skills could create difficult situations.
Can your students use our worksheet and presentation to work out how to reach a destination from a scale map?
This activity is an engaging investigation into the uses of communications technology in the modern world.
There is an opportunity to audit the students’ skills such as visualisation or map-reading to form a scale drawing. These are skills that may not have been developed due to the use of various electronic devices.
As a visualisation activity, distribute the Lost Now presentation as a handout or display it using a data projector. This is an activity where the process of thinking about what the map might show is more important than the actual outcome of the sketch they would produce. The handout has text handouts that can be printed and given to the students. There is also a map using Ordnance Survey symbols that might be better displayed on a screen using a data projector.
Students should complete the three activities outlined in the presentation either in groups or as individuals.
Tools/resources required
Ruler (a transparent ruler showing millimetres is best)
Calculators
Students will need Ordnance Survey symbols from the website below (either print sheets of the symbols or display them on a screen to save on copying).
The engineering context
Living in a highly technological world, where access to information and entertainment is at our fingertips, the Inform and Entertain Me topic is a gateway to engage and introduce students to the principles and technology that form the basis for communication devices that are used in our everyday lives.
Suggested learning outcomes
By the end of this activity students will be able to make informed decisions about technology for social, economic and environmental reasons, they will be able to use scale drawing and they will have an understanding of how waves are used to carry a communications signal.
Download the free Reading maps and scale drawings activity sheet!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Design a magnetic tool holder
**This activity gets students to use their knowledge of electromagnetism in order to design and build a magnetic tool holder for a surgical robot. **
Students learn how simple scientific principles can be used in sophisticated applications, how electric circuits can be switched on and off, and the factors that can affect the strength of an electromagnet.
Activity introduction
Each group is a dedicated design team with a compelling mission – to craft a comprehensive outline design for a tool holder tailored to seamlessly integrate with a surgical robot’s arm.
The task at hand:
• Each surgical tool boasts a magnetic fitting, necessitating the utilisation of an electromagnet within the tool holder to ensure a secure grip.
• A dynamic approach is required considering the diverse range of sizes and weights among these tools; This entails varying the electromagnet’s strength to account for this.
Guided by these challenges, teams will brainstorm, innovate, and collaborate to present their inventive solutions in a concise one-minute presentation to the rest of the class and assessed according to the success criteria on the design brief.
The engineering context
Telemedicine employs contemporary communication technology to provide medical diagnoses and patient care, even when the physician and patient are geographically separate.
Remote surgery entails utilising robotic systems within the operating room to aid surgeons during procedures. The surgeon observes the patient through a terminal and controls robotic surgical instruments using a specialised console.
Suggested learning outcomes
Upon completion of this activity, students will gain an understanding of the capabilities of surgical robots. They will grasp the transformation of basic scientific principles into intricate applications, comprehend the functioning of electric circuits’ activation and deactivation, and discern the variables impacting the strength of an electromagnet.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Tool holder testing
Students compete to make the strongest electromagnetic tool holder for a surgeons robotic arm.
A practical activity where students work in teams to build their own electromagnet and use this to make an ‘arm’ with an electromagnetic gripper at one end.
They are given some basic parts to start and a budget - a sum of ‘money’ or tokens with which to buy the other parts. Once their arm and gripper are complete they have 30 seconds to move as many paper clips from one pile to another as possible. The team moving the most paper clips in the allotted time is the winner.
This activity makes students consider the factors involved in electromagnet strength and design.
Download the activity sheets for free!
And please do share your classroom learning highlights with us @IETeducation
Maths behind a heating system
This is a practical exercise in which students will utilise their mathematical knowledge to solve problems and apply formulas. Specifically, they will compute the length of pipes necessary for an underfloor heating system. They will also write a brief explanation of how a sustainable underfloor heating system operates.
This can be effectively taught within mathematics or within design and technology, as part of resistant materials or product design.
How long will this activity take?
This activity will take approximately 60-90 minutes to complete
Tools/resources required
Green School film
Projector/Whiteboard
Measuring equipment e.g. tape measures or trundle wheels
Squared paper
The engineering context
Sustainability is a key consideration in modern engineering practices. As the world faces pressing environmental challenges such as climate change and resource depletion, engineers must design solutions that not only meet the needs of society, but also minimise their impact on the planet.
Sustainable engineering involves developing systems, products and processes that are socially, economically, and environmentally responsible. This can include reducing carbon emissions, optimising energy use, minimising waste, conserving natural resources, and designing products that can be recycled or repurposed at the end of their lifecycle.
Suggested learning outcomes
By the end of this activity students will be able to describe the operation of a sustainable underfloor heating system and they will be able to create and apply mathematical formulae in a practical context.
Download the free Maths Behind a Heating System activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation