Hero image

524Uploads

214k+Views

114k+Downloads

Create a Christmas mobile
IETEducationIETEducation

Create a Christmas mobile

(0)
Get creative with crafts this Christmas and build a beautiful mobile inspired by the winter holidays A versatile lesson for teaching about constructing robust structures and the principles of balance. It can be incorporated into a broader curriculum on design and technology, emphasising making and assembly skills. Learners will be encouraged to collect a variety of natural materials that they can use to craft a Christmas mobile. This homemade mobile will make a great sustainable Christmas decoration for the home or classroom. This is one of a series of free STEM resources designed to allow students to use the theme of the Christmas period to develop their knowledge and skills in Design and Technology, and Engineering. The IET Education resource: Homemade Christmas decoration can be combined with this activity to create one of the hanging ornaments. The time and resources required for this activity will vary depending on the types and quantities of decorations. We recommend using one of the following suggestions to make your mobile: Fir/pine cones - Cones that have been collected previously and allowed to dry out are the best. They take paint well if dry and can look effective with decoration. Keep the hanging loops long. Small fir trees - These are simple to construct. Clay star - This will be a heavy element for the mobile. The impact of different weights on the mobile should be considered. Bolts do not have to be used if not available. Pipe cleaner star - Learners may need additional assistance with measuring the length of the pipe cleaner to split it into five. Using natural materials will give a unique, designer effect, but shop-bought decorations can be mixed in if time is short. Suggested learning outcomes By the end of this activity, students will be able to understand what makes a structure strong, they will be able to understand the concept of balancing, and they will be able to make a strong, well-balanced and visually attractive Christmas mobile. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please do share your inspiring creative crafts with us @IETeducation! #SantaLovesSTEM. https://education.theiet.org/primary/teaching-resources/create-your-own-winter-mobile/
Queueing theory
IETEducationIETEducation

Queueing theory

(0)
Queuing theory is a mathematical discipline that helps us understand the behaviour of queues and make predictions about their performance. It considers various factors such as arrival rates, service times, and queue lengths to analyse and optimise queuing systems. By applying queuing theory principles, students will learn how to evaluate different queues and determine which will likely offer a shorter waiting time. Through this activity, you will develop your analytical and problem-solving skills and gain a deeper understanding of queuing theory concepts. You will also learn how to apply these principles in real-life situations, making you a proficient queue navigator in the future! Activity In this activity, students will be presented with two different systems of queues. They should think about the benefits and problems with each system. Encourage the students to think about how they can compare the two systems. What figures could they calculate? What diagrams would help to provide a picture of the advantages and disadvantages of each system? Give the students time to find/calculate their figures and then ask them to present their case. This task provides an opportunity to discuss the most appropriate average. The mean time for the first system is affected by longer wait times for a few customers. Would the mode time be a better average, as this is the most frequent experience, or is the median better? The engineering context Queuing theory is an area of maths which has many applications. When you log onto the internet, you join a queue for a server. Computer engineers and systems designers study queues to help them make systems work more efficiently. Civil engineers use it for traffic lights, and retailers use queuing theory to reduce wait time. Potential GCSE content In this activity, students will learn how to determine the mean and calculate the median from a frequency table, compare two data sets using an average and measure of spread and find the quartiles and the interquartile range (IQR). This exercise will also cover statistical diagrams, reasoning, problem-solving, estimation, and modelling. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Estimate the radius of a circle of light
IETEducationIETEducation

Estimate the radius of a circle of light

(0)
Use proportional reasoning to estimate the radius of a circle of light produced by shining a torch at various distances from the wall This is an engaging activity for GCSE students in which learners will estimate the radius of a circle of light produced by shining a torch at various distances from the wall. In order to estimate the radius, students will need to use proportional reasoning or Pythagoras theorem. Students are encouraged to use GeoGebra to gather data. Problem Solving To solve the problem presented on the first slide, students will have to employ proportional reasoning. This can be utilised to reinforce concepts of enlargement, and potentially Pythagoras if the follow-up question is used. For the second problem, students will need to collect data, consider how to manipulate the control variable (distance) and organise the data to aid in identifying any connections between distance and area. Some students may choose to create a graph and extrapolate to determine the distance, while others may seek out a function. The related GeoGebra file for this activity can be viewed at the GeoGebra website. What is GeoGebra? GeoGebra is a free and open-source dynamic mathematics software that allows users to create and manipulate mathematical figures and interact with them in real-time. It can be used to plot graphs, create 3D models, solve equations, and perform complex mathematical operations. It is widely used in education, particularly in the teaching and learning of STEM subjects. GeoGebra is available for use on desktops, tablets, and mobile devices. Potential GCSE content covered By the end of this activity students will have an understanding of Pythagoras’ Theorem, the area of a circle, and enlargement. Download the free Estimate the Radius of a Circle of Light activity sheet below! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How safe is personal transport?
IETEducationIETEducation

How safe is personal transport?

(0)
Discuss safety issues in personal transport and analyse data to work out which form of personal transport is currently the least safe Personal transport is becoming safer as technological advancements are made and more and more safety features are designed. In this fun STEM activity students will consider what safety features are in use today. Students will first name some personal transport methods, including those they use. In pairs they can discuss any safety features of these methods, why they are important and then they will rank the transport systems in order of how safe they think they are. The ‘Safety statistics A’ handout includes a chart which shows the proportion of reported road casualties by road user type and severity in Great Britain in 2012. The students will then interpret the data and write down what it shows. They can then compare this to the ranking they did in the discussion earlier. The handout shows that car occupants and pedestrians are the most common types of road casualties. How do you think safety can by improved for car occupants and pedestrians? Ask the students to think about what safety measures already exist and then ask them to think about what features cars should have in the future. This engaging activity that is the perfect way for KS3 students to develop their critical thinking skills. How long will this activity take? Approximately 30-59 minutes to complete. The engineering context Car and road safety engineers are professionals who are responsible for designing and developing vehicles and road systems that are safe for drivers, passengers, and pedestrians. They work on various aspects of vehicle and road safety, including crash testing, airbag seatbelt development, pedestrian protection, and traffic control systems. These engineers use their knowledge of physics, mechanics, and materials science to develop innovative solutions to improve vehicle and road safety. They also work closely with government agencies, automakers, and other organisations to develop and enforce safety regulations and standards. The work of car and road safety engineers is vital to ensuring the safety of drivers, passengers, and pedestrians on our roads. Suggested learning outcomes By the end of this activity students will be able to interpret data from a chart, discuss the importance of safety features in personal transport and identify car and road safety features. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Create a flood warning system
IETEducationIETEducation

Create a flood warning system

(0)
Alert homeowners to the risk of flooding with your prototype In this free resource, learners will identify the design problems presented by flooding. They will then develop a working flood warning system using the BBC micro:bit. By engaging in this activity, students will gain valuable knowledge about computing and design principles while having fun at the same time. This could be used as a main lesson activity. It is an ideal exercise for learners to improve their understanding of basic electronics, develop programming skills, make use of programmable components, and embed intelligence into a product design. **Tools/resources required ** Projector/Whiteboard BBC micro:bit system and online programming software Internet (to access programming software) PCB development software Moisture sensors and LEDs Crocodile clips or other wiring options (to attach input and output devices) PCB or strip board to create homemade moisture sensors and/or potential divider circuits PCB production facilities (etch tank or CAM router) What is the BBC micro:bit? The BBC micro:bit is a great way to get kids interested in computing. It is a small, programmable computer that can be used to create a wide variety of activities and projects. It is a powerful teaching and learning tool that helps learners develop their own systems and learn the basics of coding. It is an ideal tool for introducing children to programming concepts in a fun and engaging way. The engineering context This is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at KS3. It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners. Suggested Learning Outcomes By the end of this activity students will understand a block systems diagram of the flood warning system and they will understand the use of a moisture sensor as an input sensor. They will also be able to design a moisture sensor and/or potential divider circuit. Lastly, they will be able to successfully program the BBC micro:bit so that the system meets the design criteria. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Flood prevention strategies
IETEducationIETEducation

Flood prevention strategies

(0)
Program a prototype system to alert homeowners flooding risks The flood prevention strategies activity tasks participants to program a prototype system to alert homeowners flooding risks. Flooding is becoming increasingly common in parts of the United Kingdom and causes a lot of damage to peoples’ homes. The sooner a potential flood can be detected, the more time homeowners have to prepare and to save their property. This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Damage caused by flooding can have widespread effects on people’s lives, homes, businesses, and agriculture. Authorities aim to provide adequate warnings when the risk of flooding is likely, however this can be challenging. Activity info, teachers’ notes and curriculum links In this activity, learners will debate the social impact of flooding and how design and technology could provide solutions to this. They should think about how programmable systems could be used to help homeowners and the authorities respond better and provide earlier and more effective warnings that flooding is likely to occur. They will then develop a working flood warning system using the BBC micro:bit. Please do share your classroom learning highlights with us @IETeducation Tools/resources required Projector/Whiteboard To watch videos the ‘flood warning system’ and ‘flood engineers’ videos, please visit the IET Education website.
Integrating the bag alarm system
IETEducationIETEducation

Integrating the bag alarm system

(0)
Investigate and apply methods to attach the bag alarm device to a piece of clothing This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day. In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will design a fully integrated product. They will investigate and apply methods to attach their device to a piece of clothing. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Programming commands
IETEducationIETEducation

Programming commands

(0)
Learning to programme using BASIC language commands This activity is designed to build on understanding of programming commands and what they are used to do in a program. It requires students to show a detailed knowledge of each command and what it is used to do. It also requires them to apply programming commands in a real context. Students will engage with the BASIC language commands, understanding their purpose and how they function. They will write their own program to control an LED light, seeing first hand how their code translates into action. BASIC is a simple programming language that can be used to program electronic systems. It consists of a set of commands that can be used to perform particular functions. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT). Activity: Learning to programme using BASIC language commands This activity involves understanding and applying BASIC programming commands. Starting with a discussion about the language and its common commands, students will then predict the functions of commands like ‘high’, ‘low’, ‘goto’, ‘wait’/‘pause’, ‘if’, ‘else’, and ‘stop’. They will put their understanding into practice by writing a program to control an LED light. Reflection on their experience and a question-answer session will round off the activity, consolidating their learning and addressing any queries. The engineering context Programming plays a crucial role in engineering, especially with the rise of programmable systems, such as smart devices and autonomous vehicles. By learning to program in BASIC and applying it in a real context, students get a sense of how engineers use programming to create solutions and control systems. Suggested learning outcomes Through this beginner activity, students will gain an understanding that programs can be written using programming code. They will learn the purpose and function of a range of BASIC programming commands, and they will also get a chance to write a program using these commands to meet a given design brief. The activity aims to provide students with a solid foundation in programming, equipping them with the skills and knowledge to further explore this vital field. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. Please do share your highlights with us @IETeducation.
Programmable systems of the future
IETEducationIETEducation

Programmable systems of the future

(0)
Design a future programmable system to meet user needs As technology progresses, programmable systems are being increasingly utilised at home and in industry. What will the programmable systems of the future be like and how will we use them? In this activity, students apply what they have learnt about the uses and designs of programmable systems to invent their own to meet a specific user need. Activity info, teachers’ notes and curriculum links An engaging activity in which students look to the future and consider what they have learnt so far about programmable systems to design their own that meets a user need. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
How do animals use sound
IETEducationIETEducation

How do animals use sound

(0)
How sounds travel as waves of different frequencies and wavelengths From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. This engaging STEM activity is aimed at KS3 students and deals with how animals use sounds and how sounds change in natural phenomena. This is so a student can understand how sound waves travel. The teacher will first distribute a copy of the ‘Animal Sounds’ handout, which can be downloaded below, to each student. Make sure students understand sound is a longitudinal wave of compressions and rarefactions of the material. Soundwaves follow the laws of wave behaviour, so they are a useful introduction to wave properties. This activity can be simplified (particularly for less able students) by creating a discussion on why different animals have different hearing ranges and their experience of phenomena such as the Doppler effect. Use the handout to discuss different sounds and what they might have learned in other lessons (e.g. music) about pitch, frequency, amplitude etc. As an extension students could produce a display from low to high frequency, showing where the sound ranges used by different animals lie. Students could consider how sounds outside the normal spectrum could be used to develop new products. For example, to make ‘silent’ devices to broadcast sound or data between two points. This is a quick and simple activity that will take approximately 15 minutes. The engineering context Sounds are vibrations travelling through materials. Many animals make sounds, either for communication or for location. Sound travels at different speeds in different materials. Generally, the denser the material, the faster the sound will travel. Sound is a longitudinal wave of compressions and rarefactions of the material (a rarefaction involves particles in the material being more spread out than usual). Sound waves follow the laws of wave behaviour, so they are a useful introduction to wave properties. Suggested learning outcomes By the end of this free resource students will know that sound is produced by objects vibrating and they will understand that sound is a longitudinal wave. They will also know about the range of frequencies that can be heard by humans and other animals and they will understand that sound travels at different speeds in different mediums. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please share your classroom learning highlights with us @IETeducation
What is Remote Surgery?
IETEducationIETEducation

What is Remote Surgery?

(0)
Learn about the robots used to perform remote surgery and the important role of electromagnetism Telemedicine is a new and fast-developing field in healthcare. Even 20 years ago the idea of a surgeon being able to operate a robot from hundreds of miles away in order to perform an operation seemed like science fiction. Today, this is not only possible but engineers, working with scientists and doctors, are now designing robotic systems which will be able to operate on patients with no human intervention at all. This activity is a quick, engaging introduction to a lesson using telemedicine and robotics as a context to explore electromagnetism and the link between technology and real-life science. Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation
Balancing forces to design a boat
IETEducationIETEducation

Balancing forces to design a boat

(0)
Balancing forces to design a boat Using knowledge of forces in an engineering design context The balancing forces to build a boat activity tasks participants to apply scientific and mathematical understanding of forces (resistance, buoyancy and thrust) and Newton’s 3 laws of motion, in an engineering and design context. Relate speed to the streamlining in boat design and the shape of a boat’s hull. Consider the balanced and unbalanced forces the boat needs to withstand for maximum efficiency. This activity will demonstrate the principles of hydrodynamics, a similar set of principles to aerodynamics but involving water. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project. However, it can also be tackled independently from each subject. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Projector/whiteboard The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. Please do share your classroom learning highlights with us @IETeducation
Piezoelectric crystal
IETEducationIETEducation

Piezoelectric crystal

(0)
Discover the properties of the piezoelectric crystal and how it can be used to generate electricity The engineers behind the Watt Nightclub in Rotterdam turn the energy created by clubbers on the dance-floor into power for the lighting. There’s even a giant battery to monitor the energy and encourage the crowd to dance even more. Doing your bit for the environment doesn’t have to be boring! Activity info, teachers’ notes and curriculum links An engaging activity where students will investigate a simple piezoelectric device. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Boat design challenge – KS3 engineering
IETEducationIETEducation

Boat design challenge – KS3 engineering

(0)
A fun engineering challenge for KS3 that will give students the opportunity to test boat hull designs in a test tank. Through this process, students will learn about the importance of applying relevant scientific and mathematical understanding when refining and developing an idea. This activity allows students to explore and develop their critical thinking and decision-making skills through a practical approach. The experiment ensures a ‘fair’ set of results is produced. The success of their overall boat hull design is directly dependent upon how well they apply their knowledge and understanding across the disciplines. In addition, key learning points needs to be reinforced through mathematics. The students could carry out initial research into different hull shapes used for various types of boat, and they should produce an image board of hulls with annotations to explain why the shape of the hull is appropriate for the particular type of boat. Types of boat hulls that could be researched include yachts, cruise ships, speed boats, fishing boats, container ships, and catamarans. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project and ideal for use in a STEM Club. However, it can also be tackled independently from each subject. Tools/resources required Test Tank (the construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity) or by a technician) Vacuum Former High Impact Polystyrene/MDF or softwood blocks Optionally, modelling clay General Workshop Facilities Stopwatch Masses with a suitable holder The engineering context The focus of this activity is on the principle of hydrodynamics (a similar set of principles to aerodynamics but involving water). Suggested learning outcomes By the end of this activity students will be able to understand the importance of testing models and prototyping within the development of an idea, the need for streamlining in boat design and the principles of hydrodynamic design. Students will also be able to refine ideas in order to improve outcomes, they will be able to relate the shape of the hull to speed and the forces it needs to withstand maximum efficiency and they will be able to apply scientific and mathematical understanding to an engineering context. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Smart and modern materials
IETEducationIETEducation

Smart and modern materials

(0)
The new materials changing the way we live Discover and explore the new materials changing the way we live with our Smart and modern materials activity. The development of new materials with incredible properties are changing the way we live: from LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. Activity info, teachers’ notes and curriculum links In this practical lesson, students conduct different tests on a selection of materials and identify each one from its properties. The tests include Eureka cans, electrical circuits, and other interesting investigations to test the density, hardness, magnetic and conductive properties of materials. This activity can be tailored to include tests that best investigate the properties of the materials you have available. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation Tools/resources required Resources required for class: Samples of 8 to10 different materials, with more than one sample of each if possible. All the samples should be able to fit in the available eureka cans Access to accurate weighing scales Safety glasses. Resources required per team: HB pencil, copper coin*, knife**, iron nail, small steel file Eureka can and an accurate measuring cylinder A magnet Powerpack/battery pack, 3 leads, light bulb and holder, crocodile clips A pad of sticky notes. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. To watch the ‘Nature reinvented’ video, please visit IET Education website.
Create a tessellation pattern
IETEducationIETEducation

Create a tessellation pattern

(0)
In this engaging maths activity, students will embark on a journey of discovery and creativity as they explore the mesmerising art of tessellation. This activity is designed for KS3 students and involves formulating a rule that can be used to create tessellation patterns. It will help students develop an understanding of the tessellation that will be required to design interlocking units. This lesson plan could be taught in maths or as part of graphics within design and technology. This activity promises an exciting blend of hands-on exploration, critical thinking, and geometry, fostering a deeper appreciation for the captivating world of tessellations. What is tessellation? Tessellation is a geometric concept in mathematics and art that involves covering a surface with repeated, non-overlapping shapes. These shapes, called tiles or polygons, fit together seamlessly, creating a pattern extending infinitely across a surface. Tessellations can be found in various forms in nature, art, and architecture. The most famous example of a tessellating shape is the regular hexagon, which can fit together perfectly to cover a plane without leaving any gaps or overlaps. Other common tessellating shapes include squares, triangles, and other regular polygons. The engineering context The ‘Engineering Process’ scheme of work gives students an in-depth understanding of some engineering materials and how they are being developed in industry. This scheme was inspired by the casting process used to make the D3O smart material into a ‘usable’ form; this links to industrial practices such as quality control, standardisation, and casting manufacture. It is designed to challenge the students by requiring them to apply their knowledge and understanding of engineering materials through a ‘batch’ production experience. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Water supply
IETEducationIETEducation

Water supply

(0)
Organise water filtration components to create a safe water supply system Activity info, teachers’ notes and curriculum links This activity challenges students to work in small teams to design a water supply system for a small town of 5,000 inhabitants. They have to work within a budget, including giving themselves a profit margin. The activity offers strong opportunities for cross-curricular work with Enterprise. The ‘Catalogue of Components’ handout includes a list of possible parts from which students can include in their design of their filtration system. Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Smart sensor card game
IETEducationIETEducation

Smart sensor card game

(0)
Card game to consolidate understanding of electronic systems The role of smart sensors in our everyday lives is becoming increasingly fundamental. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future. Students are introduced to some recent developments in using smart sensors in control systems. Many of these uses are in health care and other high-tech applications. Activity info, teachers’ notes and curriculum links In this activity students learn the differences between smart sensors and ordinary sensors by studying some applications of smart sensors. They may also use a card game to consolidate their understanding of electronic systems. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can stream and download the related films by clicking on the appropriate link in the related resources section. And please do share your classroom learning highlights with us @IETeducation
Sound velocity
IETEducationIETEducation

Sound velocity

(1)
How fast does sound travel? What is sound velocity? Find out about transverse and longitudinal waves in our free, downloadable KS4 maths worksheet. From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. Activity info, teachers’ notes and curriculum links This engaging activity allows students to investigate the velocity of sound. Two methods, a direct method and an ICT based method, are proposed. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Parachuting presents
IETEducationIETEducation

Parachuting presents

(0)
How to make a toy parachute activity. In this Christmas STEM activity, kids will use items found at home to make two parachutes and test which one is faster. They will learn about gravity, air resistance and more. Download the STEM activity sheet for free. If you’re up for an extra activity, help our present find its way back to Santa’s sleigh through the maze. And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM or send them via email to IETEducation@theiet.org to be featured in our online gallery.