Hero image

516Uploads

198k+Views

106k+Downloads

Turn milk into plastic
IETEducationIETEducation

Turn milk into plastic

(0)
A project to make mouldable plastic from milk In this activity, learners will make mouldable plastic (casein) from milk and then use a mould to form a shape. It will help them to understand how plastic is made from natural resources. In an era of escalating environmental concerns and an urgent need for sustainable materials, transforming an everyday staple like milk into a versatile and biodegradable plastic presents a compelling and innovative solution. This activity could be used as a main lesson to teach learners about plastic, covering manufacturing processes and techniques using natural resources. It could also be used as part of an introduction to plastics and their environmental impact and help develop their knowledge and skills in Design & Technology, Engineering, Science and Mathematics. This resource is part of a group for Plastic-free Month that could be carried out either in school or at home. The engineering context Engineers actively contribute to environmental conservation by seeking innovative methods to produce plastic. Although plastic is extremely useful, the finite nature of crude oil underscores the need for alternatives. Bioengineers are currently exploring using organic resources such as sugarcane, potatoes, and various plants to enhance the sustainability of plastic production. Suggested learning outcomes By the end of this activity, students will be able to make mouldable plastic from milk, and they will understand that plastics made from natural products could be a way to protect the environment. Download our activity sheet and related resources for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Fault detectors using circles
IETEducationIETEducation

Fault detectors using circles

(0)
In this activity students will calculate the area of a circle to design a fault detector system. They’ll use a GeoGebra file to measure the size of the defect in hot steel bars produced by the company. They’ll then have to organise the information they receive into an understandable table. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in mathematics. Activity: Organising mathematical information to choose the optimum size for a ‘fault detector’ coil In this lesson students will engage in a roleplay activity that uses mathematical calculations to figure out the ideal size for a fault detection coil. A company has invented a system to find defects in hot steel bars. The hot cylindrical bar must pass through a defect detector which is shaped like a ring. To work properly the bar must fill between 60 to 80% of the area inside the detector ring. The activity starts with a warm-up question related to circles and percentages to introduce the concept of fault detectors used in factories, where students can check their answers with the fault detectors GeoGebra file. Then, students will need to use reasoning to work out a more challenging problem related to fault detector design. Students will use the same GeoGebra file but they’ll need to work out how to organise the given information to answer the question. Download our activity overview and presentation for a detailed lesson plan and worksheet with answers on making fault detectors using the area of a circle. The engineering context Engineers rely on fault detectors as an essential tool in various manufacturing processes to guarantee the quality of their products. To ensure the safety and dependability of products, engineers must carefully design fault detectors capable of precisely identifying any imperfections or defects. Suggested learning outcomes Working with both diameter and radius, students will be able to use a formula to calculate the area of a circle. They’ll also be able to organise data using tables. Download our activity sheet and related teaching resources for free The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation.
Queueing theory
IETEducationIETEducation

Queueing theory

(0)
Queuing theory is a mathematical discipline that helps us understand the behaviour of queues and make predictions about their performance. It considers various factors such as arrival rates, service times, and queue lengths to analyse and optimise queuing systems. By applying queuing theory principles, students will learn how to evaluate different queues and determine which will likely offer a shorter waiting time. Through this activity, you will develop your analytical and problem-solving skills and gain a deeper understanding of queuing theory concepts. You will also learn how to apply these principles in real-life situations, making you a proficient queue navigator in the future! Activity In this activity, students will be presented with two different systems of queues. They should think about the benefits and problems with each system. Encourage the students to think about how they can compare the two systems. What figures could they calculate? What diagrams would help to provide a picture of the advantages and disadvantages of each system? Give the students time to find/calculate their figures and then ask them to present their case. This task provides an opportunity to discuss the most appropriate average. The mean time for the first system is affected by longer wait times for a few customers. Would the mode time be a better average, as this is the most frequent experience, or is the median better? The engineering context Queuing theory is an area of maths which has many applications. When you log onto the internet, you join a queue for a server. Computer engineers and systems designers study queues to help them make systems work more efficiently. Civil engineers use it for traffic lights, and retailers use queuing theory to reduce wait time. Potential GCSE content In this activity, students will learn how to determine the mean and calculate the median from a frequency table, compare two data sets using an average and measure of spread and find the quartiles and the interquartile range (IQR). This exercise will also cover statistical diagrams, reasoning, problem-solving, estimation, and modelling. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Estimate the radius of a circle of light
IETEducationIETEducation

Estimate the radius of a circle of light

(0)
Use proportional reasoning to estimate the radius of a circle of light produced by shining a torch at various distances from the wall This is an engaging activity for GCSE students in which learners will estimate the radius of a circle of light produced by shining a torch at various distances from the wall. In order to estimate the radius, students will need to use proportional reasoning or Pythagoras theorem. Students are encouraged to use GeoGebra to gather data. Problem Solving To solve the problem presented on the first slide, students will have to employ proportional reasoning. This can be utilised to reinforce concepts of enlargement, and potentially Pythagoras if the follow-up question is used. For the second problem, students will need to collect data, consider how to manipulate the control variable (distance) and organise the data to aid in identifying any connections between distance and area. Some students may choose to create a graph and extrapolate to determine the distance, while others may seek out a function. The related GeoGebra file for this activity can be viewed at the GeoGebra website. What is GeoGebra? GeoGebra is a free and open-source dynamic mathematics software that allows users to create and manipulate mathematical figures and interact with them in real-time. It can be used to plot graphs, create 3D models, solve equations, and perform complex mathematical operations. It is widely used in education, particularly in the teaching and learning of STEM subjects. GeoGebra is available for use on desktops, tablets, and mobile devices. Potential GCSE content covered By the end of this activity students will have an understanding of Pythagoras’ Theorem, the area of a circle, and enlargement. Download the free Estimate the Radius of a Circle of Light activity sheet below! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Develop a programmable counter
IETEducationIETEducation

Develop a programmable counter

(0)
Investigate a decade counter circuit and compare it to a programmable counter This resource is part of a collection that supports using the BBC micro:bit for Design and Technology lessons. In this activity, students will investigate a decade counter circuit. They will then compare the operation of this to their programmable counter. Learners may need to recap basic circuit symbols and the use of circuit diagrams before attempting this activity. If students have not used circuit simulation software previously, they may benefit from a teacher demonstration of this. Any circuit simulation software that is available in school and that supports decade counters can be used. Popular examples are Circuit Wizard and Yenka. The teacher may need to check the circuits drawn by learners prior to them testing the circuits, to ensure that they have been correctly drawn, and therefore the test results are accurate. If learners encounter switch bounce they could investigate the issue further and look at ways to reduce it. This is an ideal exercise for learners to develop their technical knowledge related to the use of decade counters in electronics and compare their operation to similar programmable systems. This is a quick and simple activity that will take approximately 20 minutes to complete. Tools/resources required Projector/Whiteboard Exercise books or folders Circuit simulation software (e.g. Circuit Wizard, Yenka etc.) What is the BBC micro:bit? The BBC micro:bit is a small, programmable computer that was designed for education purposes. It was developed by the BBC in partnership with several technology companies, including Microsoft and ARM. The micro:bit features an LED display, buttons, sensors, and Bluetooth connectivity, making it a versatile tool for teaching programming, electronics and other STEM subjects. It is popular in schools around the world and has been used to create a wide range of projects, from simple games to complex robotics. The micro:bit is also affordable and accessible, with many free resources and tutorials available online for students and teachers to use. Suggested learning outcomes By the end of this activity students will be able to simulate and test the operation of a decade counter circuit and they will be able to compare and contrast hardware based electronic counters with programmable counters. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Testing the beep tester
IETEducationIETEducation

Testing the beep tester

(0)
Modify and improve the beep tester design This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Technology can be used in sports to enhance performance and help participants to improve their fitness and stamina. For example, automated beep tests can be used to monitor fitness levels during training sessions, and set targets for future improvement. In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an electronic beep test that can be used to help people monitor and improve their fitness levels. Activity info, teachers’ notes and curriculum links In this activity, learners will test their product against the design criteria and suggest possible improvements. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Model boat maths challenge for GCSE
IETEducationIETEducation

Model boat maths challenge for GCSE

(0)
Calculate the distance a model boat will travel across water Two friends are on opposite banks of a river which is 30m wide. One of them has a model boat and plans to send it across the river to the other. The boat has a small motor which moves it forward. Once the boat is in the water, it cannot be steered. Can your students calculate the distance that the model boat will need to travel across the water? This fun maths challenge will teach students about forces and motion and is perfect for GCSE students! Activity: Model boat maths challenge for GCSE The students can work individually or in pairs. Download the teacher presentation below and allow the students some time to read the task on the first slide, then show them slide 2. Students will need to find the distance downstream from the starting point. A generalised approach to such problems should be introduced along with slide 2. Leave the students to work on the task and then compare approaches and answers. A GeoGebra file has been supplied to help with the discussion. Problem Solving The students can tackle the problem in a number of ways. Some may choose to look at the path of the boat at 1 second intervals, possibly plotting the path on a graph. This is the way the GeoGebra file works. Others may use trigonometry to find the angle the boat travels and then use this with the 30m width of the river to find the distance downstream. Another approach would be to use a scale drawing. Pythagoras theorem or trigonometry can be used to find the displacement of the boat from its original position. The GeoGebra file may be useful to students who wish to gather some results for the general approach or to check their answers. Discussion Points This activity could provide an opportunity to introduce vectors and possible resultant force, making a connection with Physics. Comparing the advantages and disadvantages of various approaches would provide students with the opportunity to consolidate their learning. Extending the problem It could also be possible, with some students, to consider how to point the boat upstream, so that it ends up at the point directly opposite the start. Potential GCSE content covered In this activity students will cover graphs, Pythagoras theorem and vectors. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Mathematical measuring - lengths of leaves
IETEducationIETEducation

Mathematical measuring - lengths of leaves

(0)
The natural environment – measuring leaves Trees and their leaves are an important part of our natural environment. We can use our maths and science knowledge to better understand them and hence the environment around us! In this activity each participant chooses a tree to collect six leaves from. Once the whole class has collected their leaves, return to the classroom to measure the lengths and widths of six leaves from a single tree. Place this data in a table and then calculate the mean average length and width of the leaves from the tree. As a class discuss the meaning of these values. What do they tell us about the size of the leaves on each tree sampled? Activity info, teachers’ notes and curriculum links This is one of a set of resources developed to support the teaching of the primary national curriculum; they are designed to support the delivery of key topics within maths and science. This activity could be used as a main lesson activity to teach learners how to collect data and calculate the mean value of a data set. It could also be used as one of several activities within a wider scheme of learning focusing on the use of maths and science to understand the natural environment. Tools/resources required Access to an outside area with trees and leaves Rulers and/or tape measures Calculators The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation
Create a map of local flora and fauna
IETEducationIETEducation

Create a map of local flora and fauna

(0)
Gather information about local flora and fauna and create a map with coordinates showing the location of plants and animals In this engaging activity for KS2, students will work in groups to collect information about the flora and fauna in their area. They will then create a map that displays the location of these plants and animals using coordinates. This is one of a set of free STEM resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource combines understanding of the natural world with maths skills, to create a map and guidebook of the local flora and fauna. A fun and practical exercise in which students will take real measurements of the area and use grid paper to create a scale representation. Additionally, students will incorporate digital photographs or drawings of the flora and fauna to create informational pages for the guidebook. For optimal results, it is advisable to conduct this activity in small groups. Selecting a suitable location is crucial, which could be the school grounds, nearby park, or other accessible area such as a local forest. It may be best if only one team member produces the map, and the other focus on measurement and describing the observed flora and fauna. The flora and fauna could include plants, trees, observed birds and wildlife and insects. This activity will take approximately 80-120 minutes to complete. Tools/resources required Access to an appropriate outside area with flora and fauna Pencils Rulers Clipboards Digital cameras Grid sheets to map the local area Tape measures Chalk Glue sticks or sticky tape The engineering context Environmental engineers across the globe engage in the mapping of flora and fauna to monitor changes in the natural world. Their research spans a variety of areas, including the impact of deforestation in the Amazon, the effects of climate change in the Polar regions, and the consequences of flooding in Asia. Suggested learning outcomes By the end of this activity students will be able to draw a map, they will be able to plot the positions using coordinates and they will be able to create, identify, and describe flora and fauna. Additionally, they will be able to use SI units for lengths/distances and they will be able to measure an area and scale it onto a map. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make a leaf print
IETEducationIETEducation

Make a leaf print

(0)
Develop and reinforce your knowledge of the different parts of a leaf by painting and labelling a leaf print In this fun activity for kids, learners will be guided through the process of creating a visually attractive leaf print using various types of leaves and paint. This activity aims to reinforce learners’ understanding of the different parts of a leaf by labelling them. Download our free activity sheet for a step-by-step guide on how to make leaf prints! This is one of a set of free STEM resources that has been developed to support the teaching of the primary national curriculum, with a focus on key topics within maths and science. This particular resource is centred around creating leaf prints and developing knowledge about the main parts of a leaf. Leaves can be collected from trees in and around the school premises as available. In case it is not feasible for the learners to venture outside and collect leaves, the teacher could have a selection of leaves already picked and ready to use. It is important to avoid leaves that have completely dried out as these will not work. This activity can serve as the primary lesson or as one of several activities in a larger scheme of learning centred around using science to better understand the natural environment. There is also potential for the incorporation of art and design elements. This activity will take approximately 60 – 90 minutes to complete. Tools/resources required Access to an outside area with trees and leaves Paints and paint brushes Old newspapers or other methods of protecting desks from paint A4 or A3 paper for the prints The engineering context Environmental engineers are professionals who work to develop solutions to environmental problems. They use engineering principles to identify and design solutions for a range of environmental challenges, including pollution control, waste management, and water treatment. Environmental engineers play a crucial role in protecting the environment and ensuring that human activities are conducted in a sustainable and responsible manner. They work in a range of industries, including government agencies, consulting firms and non-profit organisations. Suggested learning outcomes By the end of this activity students will be able to make a leaf print using different leaves and coloured paints, and they will be able to identify and label the main parts of a leaf. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Tally chart activity
IETEducationIETEducation

Tally chart activity

(0)
In this interactive and engaging activity, students will create a tally chart to collect data and discover the most popular colours in the class. Get ready to observe, count, and tally as you learn more about your classmates’ colour preferences. By the end of this activity, you will not only have a beautiful visual representation of your classes’ favourite colours, but you will also develop your data collection and analysis skills. Activity This activity is one of a set of free STEM resources developed to support teaching the primary national curriculum and key topics within maths and science. In this activity, learners will produce a tally chart of favourite colours in a class. They will split into groups and go around to the other learners in the class, recording their favourite colours in their chart. They will then add up the totals and discuss their results. This activity could be used as a main lesson to develop knowledge and understanding of recording and displaying data methods or as part of a wider scheme of learning focusing on statistics. It could also be used as a starting point for learning based on the use of colour in Design & Technology. How long will this activity take? This activity will take approximately 40-60 minutes to complete. Why do we use tally charts? Tally charts are used to collect and organise data visually. They provide a quick and efficient way to record and count occurrences or responses. Tally charts help simplify data collection, making it easier to analyse and interpret information and identify patterns or trends. The engineering context Transport engineers use tally charts to record how many vehicles, and of what types, pass through road junctions or along busy roads; this helps them to plan the timings of traffic lights and identify routes where changes are needed. Engineers need an understanding of colour when producing aesthetically pleasing solutions for clients. Suggested learning outcomes By the end of this activity, students will be able to construct a tally chart to record and analyse data about their favourite colours. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Salute - KS1 maths card game
IETEducationIETEducation

Salute - KS1 maths card game

(0)
Get ready to engage their mathematical skills in this fast-paced and interactive math card game. This game of Salute will challenge addition abilities, help improve number recognition, and enhance critical thinking skills. It promotes quick thinking, decision-making, and collaboration, making it a perfect activity to strengthen mathematical foundations while having fun. This activity could be used as a starter activity covering learning from the previous lesson, a plenary activity reinforcing learning that has just taken place, or as one of several activities within a wider scheme of learning focusing on addition and subtraction. The rules Form groups of three and get ready for an engaging activity. Here’s how it works: Players 1 and 2 each select a numbered card from a pile and hold it against their forehead, facing outward. Make sure they cannot see their own number. Player 3 adds the two numbers together and announces the total. Players 1 and 2 use their deduction skills to guess the numbers on their cards based on the total announced by Player 3. Rotate the roles, with each player taking turns as Player 1, Player 2, and Player 3, and repeat the game. This entertaining game will challenge your observation and mental calculation abilities while providing a fun opportunity to collaborate and strategise with your group members. For added competition, a time limit could be set on how long learners have to answer each question. The game can be played until all learners have had a go in the different roles or as many times as required. How long will this activity take? This activity will take approximately 25-40 minutes to complete. Download our free, printable numbered cards below to begin. The numbers 1-20 are provided in line with the KS1 curriculum, but if extra challenge is required, these can be added to. The engineering context Engineers must regularly use mathematics knowledge and skills as part of their everyday job. For example, adding up how many parts are needed to build an aeroplane, calculating how strong a bridge needs to be or working out how much material is required to make the surgical gown for a hospital. Suggested learning outcomes By the end of this activity, students will be able to read the numbers 1-20, solve addition problems using the numbers 1-20, and they will be able to add one and two-digit numbers up to 20. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Easy cookie recipe - KS1 maths: Scaling and ratios
IETEducationIETEducation

Easy cookie recipe - KS1 maths: Scaling and ratios

(0)
This resource focuses on developing the understanding of ratio, fractions and scaling, by scaling up ingredients in a recipe. It could also be linked to learning in food technology, to demonstrate a practical application of maths. In this activity, students will embark on a delicious culinary adventure as they learn to expand an easy cookie recipe to create larger batches. Scaling up a recipe requires careful calculation and understanding of ingredient proportions and ratios, making it a perfect opportunity to enhance mathematical skills while indulging in the sweet rewards of baking. Suggested learning outcomes By the end of this activity, students will be able to solve a scaling-up problem involving a recipe using maths skills. The engineering context Food engineers are employed in food processing, machinery, packaging, and ingredient manufacturing. When a new food product, e.g., a breakfast cereal, has been developed, they may have to plan to scale up the production to make thousands of boxes of it each day. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your baking highlights with us @IETeducation
How to calculate density
IETEducationIETEducation

How to calculate density

(0)
Finding the density of materials by weighing items and immersing them in water This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on understanding density and, through a series of practical tests, working out which materials are low and high density. Activity info, teachers’ notes and curriculum links In this activity learners will learn about the density of materials through testing. Learners will have an opportunity to weigh and work out the volume of an object. They will use this information and their number skills to calculate the density. They will then repeat this for other objects and discuss their results as a class. This activity could be used as a main lesson activity, to teach learners how to collect data through measurement and to use number skills in a practical context. It could also be used as one of several activities within a wider scheme of learning focusing on the use of maths and science to understand the properties of materials. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your learning highlights with us @IETeducation
DIY planter box
IETEducationIETEducation

DIY planter box

(0)
Growing seedlings in compostable home-made paper containers This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on plants and how they grow. Learners will make a compostable plant container, plant and grow a seed. Plants are an important part of our natural environment. We can use our science knowledge to better understand them and hence the environment around us! Activity info, teachers’ notes and curriculum links In this activity learners will make a compostable plant box and then plant and grow a seed that can later be grown outside. This activity could be used as a main lesson activity, to teach learners how to plant seeds and care for their growth. They will also gain an understanding of what seeds need to grow i.e. sunlight, soil and water. It could be used as one of several activities within a wider scheme of learning focussing on the use of science to understand the natural environment. It could also be used to develop initial understanding of nets (making 3D forms from 2D shapes), contributing to learning in maths. It could also be used to start a discussion on the environment, as the container is biodegradable, whilst many traditional plant pots are made from polymers (which in turn are made from non-renewable oil), which take hundreds of years to decompose. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
How much paper comes from a tree
IETEducationIETEducation

How much paper comes from a tree

(0)
In this fun maths activity for KS2, students will measure the weight of different paper-based packaging materials and calculate the potential number of items that could be produced from an average tree. This task will teach learners how to use division to solve real-world problems. It can also function as part of a wider scheme of learning centred around utilising mathematics to comprehend ratios and proportions or as an introduction to sustainability concepts. By considering the number of natural resources needed to make common everyday items, we can also become informed consumers with more awareness of the environmental impact of our consumption. What you will need How much paper comes from a tree worksheet Selection of paper products Scales Pencils Erasers Calculators The engineering context Engineers must possess knowledge of the number of items they can produce from a single source. For instance, in clothes manufacturing, production engineers should be aware of the number of shirts or dresses that can be made from a single roll of fabric. Suggested learning outcomes By the end of this activity, students will be able to know how to use division to solve practical problems, they will be able to convert grams to kilograms, and they will be able to calculate how many paper-based items can be made from one tree. Download for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to work out scale
IETEducationIETEducation

How to work out scale

(0)
Scaling activity to change the size of items In this activity learners will change the scale of items, by doubling or halving the size and drawing them to a new scale. Learners will be shown that multiplication and division are useful methods to change the scale of an item. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on the use of multiplication and division in the context of scaling an item to either double or half its size. This activity could be used as a main lesson activity to teach learners how to work out scale or to reinforce understanding of multiplication and division. It could be used as one of several activities within a wider scheme of learning focusing on the use of maths to understand ratio and proportion. It could also support the development of drawing skills in art. The engineering context Structural engineers collaborate with architects to design various structures, such as houses, hospitals, office blocks, bridges, oil rigs, ships, and aircraft. They create scaled-down drawings for each of these structures. Suggested learning outcomes By the end of this activity, students will know how multiplication and division can be used to work out scale, they will be able to scale drawings back to their original size by either scaling up or scaling down, and they will be able to solve simple problems in scaling contexts, i.e. two times larger and two times smaller. Download the activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Dress up game - KS1 maths
IETEducationIETEducation

Dress up game - KS1 maths

(0)
A dress-the-model activity to work out how many combinations of clothes are possible This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focusses on a dress-the-model activity to determine the number of wearing combinations possible with a set number of clothing items. It allows pupils to take a practical approach to applying multiplication. This activity could be carried out as individuals or in pairs. Learners can create a table showcasing the various combinations to organise their findings effectively. They may be guided through this process using the Dress-the-Model table slide as an example. This approach encourages students to analyse and present their results in a structured manner, enhancing their understanding of the activity’s outcomes. The engineering context Understanding combinations is essential in engineering, enabling engineers to optimise the production process and achieve the best cost outcomes. Regarding bicycles, which consist of numerous parts, engineers carefully determine the optimal combination of these parts to minimise production expenses while maintaining high-quality standards. Suggested learning outcomes By the end of this activity, students will be able to write and calculate statements for multiplication, they will be able to solve a contextual problem using multiplication, and they will be able to understand how to determine the number of wearing combinations possible using a dress-the-model activity. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
How deciduous trees change
IETEducationIETEducation

How deciduous trees change

(0)
This fun science activity for kids will teach students how deciduous trees change across the seasons. Students will then have the opportunity to track and record how an individual tree changes over the period of a year. In this activity learners will be shown how a deciduous tree changes across the seasons, then either as a class or individually recording how an individual tree changes over the school year. This activity is inspired by Greek mythology. A dryad is a mythical Greek creature, often associated with forests. They are said to be female nymphs who inhabit trees or woods and protect them from harm. Dryads have been featured in many stories throughout history, and they often symbolize the beauty and power of nature. This activity could be introduced as part of a main lesson activity at the start of the new year. It could then be followed up on a weekly (or periodic) basis over the year, with learners building up a record of how the identified tree within the school grounds changes over time. This could be used either to create a diary, a logbook, or it could form the basis for a classroom display. This is a long-term activity which can run for the duration of the school year. Following an initial introduction, individual learners or table groupings could be responsible for completing the diary on a weekly basis. If carried out by individuals, different learners could be allocated the responsibility each week, progressing through the class register. An appropriate tree within the school grounds needs to be identified. Ideally a tree visible from the classroom would be used. As applicable by local requirements, risk assessments may need to be carried out if the learners need to go outside the school building to carry out this activity. For continuity it is advantageous to have a set position from which the picture or observations are made. Tools/resources required Projector Copies of the How do deciduous trees change handout Digital cameras (if required) with access to suitable printing facilities The engineering context Environmental engineers are tasked with improving the quality of the natural environment around them. The more they understand about this, the better they can do their jobs. Suggested learning outcomes By the end of this activity students will be able to describe how a deciduous tree changes with the seasons. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to Make a Magnetic Newton’s Cradle
IETEducationIETEducation

How to Make a Magnetic Newton’s Cradle

(0)
Making a cradle using magnets that repel each other Newton’s cradle uses swinging spheres to show how the conservation of momentum and the conservation of energy works. The device was named after Sir Isaac Newton and designed by French scientist Edme Mariotte. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on producing a magnetic Newton’s cradle that uses magnets which repel each other instead of the usual metal spheres. This is a great way for students to learn all about magnets and could be used as a one-off activity or as part of a wider unit of work focusing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University. This activity will take approximately 65-90 minutes. Tools/resources required Circular magnets with holes in the middle (with N and S poles) 150 mm lengths of dowel 75 mm lengths dowel 100 – 120 mm long pieces of string (6 per unit being built) Masking tape Example of a ‘regular’ Newton’s cradle. Scissors Hot glue guns, if appropriate Magnetic forces Magnets are made from materials such as iron and nickel and they have a north pole and a south pole. When the north pole of a magnet is placed near the south pole of another magnet, they will attract each other. When two poles that are the same are placed near each other, they will repel each other. For example, north to north and south to south. The engineering context Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. For example, when developing green transport solutions. Suggested learning outcomes By the end of this activity students will be able to describe magnets as having two poles – north and south, they will understand that magnets either attract or repel each other and they will be able to make and test a ‘magnetic’ Newton’s cradle. Download the free How to make a magnetic Newton’s cradle activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation