Hero image

524Uploads

214k+Views

114k+Downloads

Produce a treadle pump
IETEducationIETEducation

Produce a treadle pump

(0)
Make a working prototype of a treadle pump that is designed to help people living in remote villages source water. Learners will create a functional and fully operational prototype of a treadle pump designed to lift water from wells in this task. This project aims to enhance their ability to effectively design products that address social needs. It will also improve their manufacturing skills and capacity to choose suitable materials, tools, and equipment. This activity can be utilised as the final part of a four-lesson unit, following the activities “Investigating Problems Faced by People in Remote Areas,” “Methods of Obtaining Water,” and “Card Modelling of a Treadle Pump.” Alternatively, it can be used as a standalone main lesson to provide comprehensive knowledge and understanding of the subject matter. How long will this activity take? This activity will take approximately 60-120 minutes to complete. Download the activity sheet below for a full lesson plan. The engineering context Integrating social issues into the design process holds significant importance in all GCSE Design and Technology 9-1 courses, as well as the GCSE Engineering 9-1 course. Students are obligated to learn about this crucial aspect. Furthermore, they must also learn about carefully selecting and utilising materials, tools, and equipment to create prototypes. The knowledge acquired through these courses can extend beyond the classroom, finding practical applications in the future when designing and producing products to meet the social needs of individuals and communities. Suggested learning outcomes By the end of this activity, students will be able to manufacture a working prototype of a treadle pump for people living in a remote village, they will be able to select appropriate materials, tools and equipment for the activity, and they will be able to understand the use and application of wasting, joining, forming and finishing techniques. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Investigating problems faced by people in remote areas
IETEducationIETEducation

Investigating problems faced by people in remote areas

(0)
Craft solutions for clean water and make a proto-type of an idea What is a treadle pump and how does it work? This is one of a series of resources designed to support the delivery of DT at secondary, using Design & Technology and Engineering. Each resource covers a key topic from one or more of the specifications for these subjects. This resource focuses on the social problems and challenges faced by people living in remote parts of the world, and allows students to craft solutions to these issues. Millions of people live in remote parts of the world. They face many challenges, such as limited access to electricity and difficulties in sourcing food and water. Activity info, teachers’ notes and curriculum links In this activity, secondary learners will investigate some of the problems faced by people living in remote areas, and how they might be solved. It will build their knowledge of social issues and how this affects the design of products and systems. The DT KS4 activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Methods of obtaining water
IETEducationIETEducation

Methods of obtaining water

(0)
Design a treadle pump This is one of a series of GCSE DT resources designed to support teachers to deliver high-quality, inspiring lessons. Each resource covers a key topic from one or more of the specifications for these subjects. This resource focuses on designing ideas to solve the problem of water supply faced by people living in remote villages. One challenge that many people living in dry, remote areas face is the sourcing of water to irrigate crops and therefore grow food. A treadle pump can be used to make this much easier and far less time consuming. Activity info, teachers’ notes and curriculum links How does a water pump work? In this activity, learners will produce design ideas for a treadle pump that can raise water from wells. It will develop their ability to design products that meet a social need. It will also develop their skills in the drawing techniques used by designers and engineers to communicate their ideas. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Well placement between villages
IETEducationIETEducation

Well placement between villages

(0)
Calculate the distance from a village to a potential well position In a large semi-desert area, three small villages are to share a new well. Engineers will create the well by drilling down to the water table. But where should the well be placed? Activity info, teachers’ notes and curriculum links An engaging activity in which students will determine the best location for a well between 3 villages. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The related GeoGebra file for this activity can be view on the geoGebra website And please do share your classroom learning highlights with us @IETeducation
Speedometer calibration
IETEducationIETEducation

Speedometer calibration

(0)
In this fun GCSE maths activity, students will delve into the exciting world of bicycle speedometers and put their accuracy to the test. By conducting this experiment, learners will better understand how speedometers work and sharpen their mathematical and analytical skills. Download the presentation below and allow the students to read the problem and contemplate how to model the situation mathematically. Some students may need assistance comprehending terms such as “front fork.” Encourage them to ponder the meaning of “ms-1,” such as the number of meters the wheel covers in one second. Furthermore, ask them to consider how they can determine the distance the wheel covers in a single rotation, two, or even 100 rotations. Problem Solving To solve this problem, the students will need to engage in logical thinking to determine the necessary information. One possible approach is to work backwards from the information required to answer the question (as shown below). We need the distance travelled (m) and the time taken (s) to calculate the speed. Given that the time is 1 minute, equal to 60 seconds, the question becomes: How can we find the distance? The wheel covers 0.5π meters per rotation, so for n rotations, the distance will be 0.5π x n. Consequently, the speed in ms-1 can be expressed as (0.5π x n)/60. The students can determine the percentage errors using this information and the speedometer readings. These errors vary slightly for each reading. Discussion points Examine how the students approached the problem, specifically analysing their thought processes. How did they determine the necessary information and identify ways to obtain it? You can review concepts such as calculating the circumference of a circle, working with percentages, rounding numbers, and ensuring precision. Potential GCSE content This activity will cover calculating the circumference of a circle from a radius, using compound measures (speed) and converting from minutes to seconds. Download the activity sheets below! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
FIRST LEGO League Discover poster
IETEducationIETEducation

FIRST LEGO League Discover poster

(0)
Primary classroom poster summarising the FIRST LEGO League Discovery programme. Download this single poster or order a full set of posters for free from the IET Education website.
Bake a Yule log
IETEducationIETEducation

Bake a Yule log

(0)
Give making a Yule log a STEM twist by using key maths skills to work on the weighing and timing for this delicious Christmas dessert. This is a great activity that brings together baking skills, mathematics and creativity, and tastes delicious! The Yule Log is a traditional cake eaten at Christmas. It is thought that this cake originated in France to represent the wooden log that was burned to bring good luck through the winter months. It was hoped that by burning the log and keeping the ashes until the following year, it would ward off evil spirits during the long winter months. Download the recipe and teaching notes for free. Oh ho ho, and please do share your experiment highlights with us @IETeducation #SantaLovesSTEM
Create stained glass you can eat!
IETEducationIETEducation

Create stained glass you can eat!

(0)
Learn how to create colourful, edible stained glass and discover the science of light in this fun experiment for kids. What ingredients will you need? • 790g white, granulated sugar • 475ml water • 240ml light corn syrup • ¼ teaspoon cream of tartar • Food colouring (red or green) Download the free Edible stained glass activity sheet to learn the science behind this experiment! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Don’t forget to take photos of your edible stained glass and share them with us @IETeducation
Create a retro lava lamp
IETEducationIETEducation

Create a retro lava lamp

(0)
Learn how to create a captivating retro lava lamp in this fun Christmas STEM activity for kids. Have a go at our mixtures and density experiment to create fun colour bubbles and explore science. Equipment you will need A jar Half a jar of sunflower oil Water Red food colouring Bicarbonate of soda or an effervescent tablet And a torch The engineering context Understanding the way different materials work and the properties they all hold is vital in creating and developing solutions to our world’s problems. Engineers are interested in the world around them and use these different materials as the basis of every solution they create. Watch the IET video with ‘Science with Bexy’ and download the activity sheet for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, please share your experiment highlights with us @IETeducation! #SantaLovesSTEM.
KS2 times table cake challenge
IETEducationIETEducation

KS2 times table cake challenge

(0)
Get children thinking about combinations and KS2 times tables with this visual and hands-on activity for primary aged children. With a row of 24 cupcakes, what happens when every second cake has white icing and every third cake has a red smartie? Our lesson plan is mapped to the UK curricula and has all the notes to hand to guide you through the 45 minute resource as a classroom activity or at home. This activity in partnership with MEI could be used in Key Stage 2 as a stand-alone activity, as a focused task to develop problem solving skills, or as a consolidation task related to 3x,4x,8x multiplication facts. Pupils develop both their problem-solving and reasoning skills. They will also practice their mental recall of the 3x, 4x and 8x multiplication tables without the standard ‘fill out the multiplication table’. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.
Make a water mill that generates electricity
IETEducationIETEducation

Make a water mill that generates electricity

(0)
Create a water mill to produce electricity and power an LED In this exciting activity for primary students, kids will understand what is meant by, and the need for, renewable energy. They will make and test a water mill that produces enough electricity to light an LED and learn how water wheels work. This engineering activity will show students how electricity can be generated using the power of moving water and teach students facts about how the ancient Greeks have affected modern life. Resources for teachers are provided. And please do share your classroom learning highlights with us @IETeducation
Design a place setting for a party
IETEducationIETEducation

Design a place setting for a party

(0)
Get ready for a street party celebration and introduce basic maths with this fun activity In this engaging STEM activity, learners will design and make a place setting for a party or celebration. They will identify the items required, measure the space needed for themselves and the items, and use this information to design and make the place setting. This challenge is perfect for 5–7-year-olds and could be used as a main lesson activity to teach about designing within a theme or practical applications of measurement. It could also be used as a part of a wider scheme of learning focusing on practical skills within graphics or graphic design. Activity: Design a place setting for a party This is one of a series of free resources designed to allow learners to use the theme of a celebration to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on the designing and making of a place setting for a party to celebrate the event, so you can adapt to any celebration. Students will use basic maths skills for KS1 to practice with a ruler as they work out how much space is needed to sit and dine together for a party banquet. This exercise will take approximately 80 – 120 minutes and can be carried out in school or at home. Tools/resources required Paper and card Colouring pencils or pens Scissors Pencils and rulers Glue sticks Access to plates, cups and cutlery for measurement Disposable cutlery, if available Paper tablecloth (for extension activity) Suggested learning outcomes By the end of this STEM project students will be able to design from a brief, they will be able to measure dimensions and use these when designing and they will be able to create an attractive and fun place setting for a special party. The engineering context All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients. Download the free Design a place setting for a party activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to make a crown activity
IETEducationIETEducation

How to make a crown activity

(0)
Use card to craft your very own crown - fit for royalty… In this practical STEM activity for kids, students will learn about 3D structures within a graphics context. Learners will have the opportunity to use a template to help them cut out the parts for a crown. This exercise is aimed at primary school students and could be used as a main lesson activity to teach learners about simple structures made from separate parts. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource is a structure-making activity which involves using graphics media to make and assemble a crown. Parts of this activity may be challenging to some learners as it requires good manual dexterity. Download the activity sheet below for a step-by-step guide on how to construct your own crown using card strips from a template. Once students have made their crown, the teacher will discuss the results of the activity with learners and explain how nets are used to make objects and how separate parts are used to make a larger structure. This activity will take approximately 50 – 80 minutes. Tools/resources required Glue sticks Coloured card Coloured crepe paper Scissors Paper fasteners Decoration materials Suggested learning outcomes By the end of this activity students will be know what a 3D shape is, they will understand how structures are made using separate parts and they will be able to make and assemble a crown structure from card strips. The engineering context Engineers use nets to allow them to make scale models of their design ideas. Nets are also used to make almost all the card-based packaging we use. Download the free How to make a crown activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make a DIY clay teacup
IETEducationIETEducation

Make a DIY clay teacup

(0)
Easy DIY clay teacup project for a celebration This fun STEM activity is a perfect way to get creative with your 4- to 11-year-olds! The free activity sheet guides you through the simple steps to make a clay teacup for a celebration party or commemorative cup to keep or give away as a gift. This activity is mapped to the UK curricula for design and technology and can be done at home or at school as a cheap DIY activity with air-dry clay. Let them develop hands-on skills using a coil pot method and discuss materials as you follow along with the activity steps to discover their inner engineer. This exercise could be used as a main lesson activity to teach learners about manipulating materials to make products. Download the activity sheet to develop your hands-on practical skills and follow our step-by-step guide on how to make a commemorative cup, using the coil pot method. As an optional extension learners could add decoration to the inside of their cups. This activity will take approximately 60 – 90 minutes to complete. Tools/resources required Air-dry clay Yogurt pots or potatoes Felt tip pens Acrylic paint Small container for water/clay mix Suggested learning outcomes By the end of this activity students will understand how structures are made using clay and they will be able to make, assemble and decorate a teacup for a celebration. The engineering context Engineers use clay to make 3D models of structures and even products like cars. Automotive engineers will make clay models of new cars to test how streamlined they are in wind tunnels. Download the free Make a DIY clay teacup activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make bunting for a party
IETEducationIETEducation

Make bunting for a party

(0)
Making flag bunting as a class to use during celebrations and parties This is one of a series of free and printable resources designed to allow learners to use the theme of ‘celebration’ to develop their knowledge and skills in Design and Technology. This resource focuses on the designing and making of bunting to be put out at a party to celebrate an event. Follow this easy and free bunting activity as you make potato prints with 4-11 year olds! Create flags with your class or at home and celebrate events in style. This activity could be used as a main lesson activity to teach about designing within a theme, printing with templates and/or teamworking skills. It could also be used as part of a wider scheme of learning, focusing on practical skills within graphics and graphic design. Download the activity sheet for a step-by-step guide on how to make bunting for a party! As an extension learners could try using different shapes other than a triangle. This is a fun and simple activity that will take approximately 60 – 90 minutes. Tools/resources required Potatoes Knives Paint Paper Colouring pencils or pens Scissors Pencils and rulers String Stapler Suggested learning outcomes By the end of this activity students will be able to design a flag for bunting for a celebration. They will also be able to use potato printing techniques and they will be able to work as a team to assemble bunting from flags made by the whole class. The engineering context All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients. Download the free Make bunting for a party activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Learn to count: Balloon rocket activity
IETEducationIETEducation

Learn to count: Balloon rocket activity

(0)
Learn how to count forwards and backwards by releasing balloon ‘rockets’ During this exercise, participants will practice counting backwards using different steps i.e., 1s, 2s, 3s, 5s, and 10s. This will equip them with the necessary skills to count to and from 100, both forwards and backwards, starting from zero or any given number. To increase engagement, students will release balloon ‘rockets’ at the conclusion of each countdown. This activity can be used as a main lesson activity, to teach learners how to count backwards using the prompts in the teacher presentation. This is an engaging and practical exercise that can be carried out as a whole class or in small groups. When using the presentation, you are prompted with which step to use for the countdown and with a starting number. As you click through the steps each number, in sequence, will be revealed and at zero the balloon will be launched. If some younger learners struggle with blowing up balloons, some could be inflated prior to the lesson and ‘tied-off’ using clips. As the balloons are released when the count reaches zero, the balloons should not be tied. If re-inflation is not possible within the time, a proportion of the balloons could be released each time – e.g., a certain colour or all the balloons from one table group. As an optional extension activity, the count downs could be started from 100 or another integer of the teacher’s choice. How long will this activity take? It is a quick and simple activity that will take approximately 25-35 minutes to complete. Tools/resources required Whiteboards Whiteboard markers and erasers Pack of balloons Balloon pump The engineering context An understanding of number combinations and number operations is vital for engineers who need to solve lots of interesting problems. For example, electronic engineers use countdown timers to let motorists know when a traffic light will go from red to green and allow the motorist to drive off safely. Suggested learning outcomes By the end of this activity students will be able to count backwards from numbers up to 50 and they will be able to count backwards in steps of 1s, 2s, 3s, 5s, and 10s. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Solving maths problems (KS1)
IETEducationIETEducation

Solving maths problems (KS1)

(0)
Use a number balance see-saw This engaging activity is designed for KS1 to enhance students’ addition and subtraction skills through a practical and engaging approach! Learners will use a model of a see-saw to balance a range of numbers. They will then decide how many items need to be added or subtracted to bring the see-saw into balance. By actively participating in this hands-on exercise, learners will gain a deeper understanding of addition and subtraction as they work to achieve equilibrium on the see-saw by carefully selecting and arranging various numbers. This activity could be used as a main lesson to teach learners how to make a model see-saw and solve number problems using the prompts in the presentation and carried out in pairs or small groups. To get started, download the activity sheet containing a comprehensive, step-by-step guide on building the see-saw. Additionally, we have included printable box templates for your convenience. Students can easily position these box templates onto the see-saw and then experiment by placing coins or marbles into the boxes, effectively achieving balance on the see-saw. The engineering context Engineers rely on problem-solving daily to find solutions to a wide array of issues. For instance, when an aerospace systems engineer is tasked with determining the amount of cargo that can be loaded onto a rocket bound for a space station, they will skilfully adjust the contents, either adding or removing items, to ensure that the cargo meets the precise weight requirement. Suggested learning outcomes By the end of this activity, students will be able to solve one-step problems that involve addition and subtraction, and they will be able to make a see-saw model and solve practical balance number problems. Download for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Balloon speakers
IETEducationIETEducation

Balloon speakers

(0)
In this simple STEM activity for kids learners will investigate how a balloon can be used as a simple speaker. They will blow up the balloon, tap it and listen to how to sounds travel through it. They will then discuss the outcome of their experiment and explain why the balloon speaker works in the way that it does. This activity could be used as a starter activity to introduce the concept of sound and how it travels, or as one of several activities within a wider scheme of learning focusing on sound. Activity: Balloon speakers This is one of a set of free resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on using a balloon as a simple speaker to amplify sound. What happens when you tap the balloon? What can you hear and feel? Why do you think this is happening? This is a quick and easy STEM activity that will take approximately 15 – 20 minutes. The engineering context Engineers must understand how speakers work in order to successfully design products that use them, such as phones, music players and TVs. Sound engineers must understand how sound can be amplified and transmitted from one place to another. For example, at a concert. Understanding how speakers work is a very important part of this. Suggested learning outcomes By the end of this exercise students will know that vibrations from sounds travel through a medium in the ear. They will also be able to use a balloon as a simple speaker and explain how it works. Lastly, they will understand how pushing air closely together affects the volume of sound travelling through it. Download the Balloon speakers activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Engineer a better world poster
IETEducationIETEducation

Engineer a better world poster

(0)
Secondary classroom poster where your students can find out more about the ‘Engineer a Better World’ campaign. Download or order a full set of posters for free from the IET Education website.
Bubble engineering poster
IETEducationIETEducation

Bubble engineering poster

(0)
Secondary classroom poster where Professor Eleanor Stride explains her innovative research using bubble engineering. Download the single poster or order a full set for free from the IET Education website.