Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
State the position of the Earth and the Moon with respect to the Sun in solar and lunar eclipses.
Draw simple ray diagrams of solar and lunar eclipses.
Describe evidence that led to a change in the model of the Solar System.
This detailed PowerPoint presentation is an educational resource designed for teaching the process of hydrocarbon cracking to secondary school students studying chemistry. It aligns with curriculum specifications related to hydrocarbons, alkenes, and organic chemistry. The resource introduces key concepts such as the definition of alkenes, their general formula, and their unsaturated nature due to the presence of a double bond. It also covers the process of cracking hydrocarbons, explaining both catalytic and steam cracking methods, and includes relevant equations for students to practice.
The lesson provides clear learning objectives, which include defining alkenes and describing the first four alkenes with their molecular formulas and structures. Additionally, the resource explains how to conduct a chemical test for alkenes and outlines the conditions necessary for cracking. Students can engage with the content through interactive starter activities, such as answering questions about hydrocarbons, molecular formulas, and structural representations, which will help them develop a deeper understanding of the topic.
The resource further explores real-world applications by discussing the role of cracking in oil refineries. It also addresses the challenges of balancing the supply and demand for various hydrocarbons, providing students with context for how cracking can be used to produce shorter, more useful hydrocarbons from longer chains. The concept of polymerization is also included, explaining how ethene (a product of cracking) is used to create poly(ethene), a widely used plastic material.
To enhance the learning experience, the PowerPoint includes multimedia elements, such as links to YouTube videos that demonstrate experiments and the cracking process. The resource is available in PowerPoint format (.pptx) and has been updated to ensure accuracy and relevance. This resource is an ideal teaching tool for educators looking to deliver comprehensive, engaging, and informative lessons on hydrocarbon cracking.
This PowerPoint presentation offers an in-depth exploration of the combustion of hydrocarbons, making it an ideal resource for secondary school chemistry lessons. It covers the fundamental concepts of complete and incomplete combustion, emphasizing their differences, practical applications, and the potential dangers associated with incomplete combustion.
The lesson begins with clear learning objectives, including writing and balancing word and symbol equations for hydrocarbon combustion, describing the testing methods for combustion products, and explaining the lethal effects of carbon monoxide produced during incomplete combustion. Starter activities engage students with thought-provoking questions about the properties of hydrocarbons, such as flammability, viscosity, and boiling points relative to chain length.
The presentation includes detailed explanations of the chemical reactions involved in combustion, highlighting the oxidation processes of carbon and hydrogen. It provides guidance on how to write equations for complete and incomplete combustion, with examples such as methane, propane, and butane. Tests for identifying combustion products, such as the use of limewater for carbon dioxide and anhydrous copper sulfate for water, are also demonstrated.
Key safety aspects are addressed, including the risks of carbon monoxide poisoning, the importance of regular boiler servicing, and the use of carbon monoxide detectors. The resource emphasizes the practical implications of combustion processes, making connections to real-world applications and hazards.
Multimedia elements, such as video links, enhance the learning experience by providing visual demonstrations of combustion tests. This PowerPoint file (.pptx) is designed to align with educational specifications, ensuring relevance and clarity for both teachers and students. Updated content makes this an excellent tool for delivering engaging and informative lessons on hydrocarbon combustion.
This PowerPoint presentation provides an insightful exploration of the properties of hydrocarbons, specifically designed for secondary school chemistry lessons. It delves into how the physical and chemical properties of hydrocarbons change with chain length and their implications for real-world applications.
The resource begins with clear learning objectives, such as demonstrating the separation of crude oil into fractions through fractional distillation, describing trends in viscosity, flammability, and boiling point as chain length varies, and linking these properties to the practical uses of hydrocarbons. Starter activities engage students with thought-provoking questions, laying the foundation for the lesson.
Core concepts are presented through easy-to-follow explanations and interactive activities. The presentation covers key terms, including boiling point, flammability, viscosity, and volatility, with gap-fill exercises to reinforce understanding. It explains how fractional distillation separates hydrocarbons based on boiling points and explores the properties of smaller versus larger hydrocarbons. For instance, smaller hydrocarbons are more volatile and flammable, making them ideal for cooking gases, while larger hydrocarbons are more viscous and suited for road surfacing.
The resource also includes practical demonstrations, such as laboratory fractional distillation, supported by linked video content for enhanced understanding. Students are challenged to apply their knowledge by writing methods for separating synthetic crude oil and investigating its fractions’ properties.
Available as a PowerPoint file (.pptx), this resource is updated to align with educational standards and offers a comprehensive tool for engaging and educating students about the properties and uses of hydrocarbons.
Learning Objectives:
• Define what work is in a scientific context.
• Calculate the work done by a force.
• Use the equation for work done to calculate distances or size of forces.
Learning Objectives:
• State the factors that affect the change in the gravitational potential energy store of a system.
• Calculate the gravitational potential energy store of a system using the mass, gravitational field strength, and height.
• To investigate how the gravitational potential energy store of different objects is affected by their mass and height.
Learning Objectives:
• Describe closed and open systems and the changes to energy stores within them.
• Investigate the effect of friction from different surfaces on energy dissipation and work done.
Learning Objectives:
• Describe an efficient transfer as one that transfers more energy by a useful process.
• Calculate the efficiency of a range of energy transfers.
• Rearrange the efficiency equation to find input or total output energy.
Learning Objectives:
• Describe the energy transfers in a roller coaster and a pendulum.
• State that energy is conserved in any transfer.
• State that energy is dissipated (is no longer useful) when it heats the environment.
Learning Objectives:
• State the factors that affect the size of a kinetic energy store of an object.
• Calculate the kinetic energy store of an object.
• Investigate how mass and speed affect the kinetic energy store.
Learning objectives:
• State the factors that affect the elastic potential energy store of a spring.
• Calculate the elastic potential energy store of a stretched spring.
• Perform calculations involving the rearrangement of the elastic potential energy equation.
This interactive PowerPoint presentation, titled Solutions, is designed for secondary-level science students to explore the concept of solutions, how substances dissolve, and the particle model of dissolution. It provides clear, engaging, and practical content, aligning with key science curriculum standards.
The lesson begins with well-defined learning objectives: understanding key terms related to solutions, describing observations during the dissolution process, and explaining how substances dissolve using the particle model. A starter activity using word unscrambling ensures students are immediately engaged while introducing core vocabulary such as solute, solvent, and solution.
Core content includes detailed explanations and examples of everyday solutions like sugar in tea, copper sulfate in water, and nail polish in acetone. The lesson uses visual aids, such as particle diagrams, to illustrate the arrangement and interaction of particles during the dissolution process. Practical tasks, like filling in the gaps and analyzing real-world examples, deepen students’ understanding.
A hands-on demonstration reinforces the law of conservation of mass by measuring the mass of a solute, solvent, and solution. Students are guided to observe and calculate that mass remains unchanged during dissolution, emphasizing key scientific principles. The lesson concludes with review questions that assess comprehension and encourage critical thinking.
Updated with modern examples and enhanced visuals, this resource provides an up-to-date and adaptable tool for educators. Delivered in a PowerPoint format (.pptx), it ensures compatibility with most devices and platforms. This lesson is perfect for both classroom teaching and independent learning.
Keywords: Solutions, Solute, Solvent & Conservation of Mass.
Learning objectives:
Describe the process involved in genetic engineering.
Apply knowledge of the process of genetic engineering to explain how certain crops have been genetically modified.
Evaluate the potential benefits and risks of GM crops.
This PowerPoint resource, explores how changes in concentration and pressure affect reaction rates, making it ideal for secondary-level chemistry lessons. Students will learn to describe these effects, supported by collision theory, and understand how particle interactions influence reaction outcomes.
The resource includes a structured lesson plan with objectives, engaging starter activities, and thought-provoking plenary questions. Students will answer questions like “What is collision theory?” and “Why does a concentrated acid react faster than a dilute one?” Visual explanations of particle interactions at different concentrations and pressures clarify key concepts. Real-world examples, such as comparing dilute and concentrated acids, help contextualize the material.
Additional features include interactive elements, such as a link to an online simulation of reaction rates and practice questions, to reinforce learning. The resource is formatted as a .pptx file, ensuring compatibility with PowerPoint or Google Slides.
Last updated on 13/12/24, this resource incorporates modern examples and student-centered activities, enhancing its relevance and usability. Perfect for teachers aiming to deliver dynamic lessons on reaction kinetics, it supports curriculum standards and fosters critical thinking.
This comprehensive PowerPoint presentation, titled Effect of Temperature, is a dynamic resource designed for educators teaching the impact of temperature on reaction rates. Targeted at science students, this resource aligns with the principles of collision theory and provides an interactive approach to learning.
The lesson begins with clear learning objectives: understanding how temperature affects reaction rates and using collision theory to explain this phenomenon. A starter activity engages students with fundamental questions about reaction rates, graphing variables, and basic calculations, setting the stage for deeper exploration.
The main content includes structured explanations and hands-on simulations, using the PhET Reactions and Rates tool. Students will observe and analyze reactions at varying temperatures, enhancing their grasp of key concepts like particle movement, activation energy, and the conditions for successful collisions. Visual aids and particle diagrams complement the teaching material, making abstract concepts accessible and engaging.
This resource also features practice questions for skill reinforcement and challenge activities for advanced learners. A plenary section reviews key factors influencing reaction rates, encouraging students to consolidate their understanding.
Designed for flexibility, this resource can be adapted to classroom or virtual learning environments. The included file is a PowerPoint presentation (.pptx), ensuring compatibility with most devices. Last updated on 13/12/24 with detailed annotations and questions, this resource provides an up-to-date and interactive tool for educators.
Keywords: Collision Theory, Reaction Rates, Temperature and Activation Energy.
Learning objectives:
To be able to describe what a physical property is.
To be able to define common properties.
To be able to describe the properties of metals and non-metals.