I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
New GCSE AQA Physics lesson on ' Centre of Mass' written in line with new AQA Physics specification. All questions provided with answers within power point.
Starter simply looks at balancing object on one finger and how intuitively we can know how to do this. Then stability of different shapes is reviewed and again highlighted how we can assess whether something will be stable or not. The physics of this is then applied in terms of centre of mass. The technique to find the centre of mass for a symmetrical shape is detailed and practices with questions.
Suspended equilibrium and centre of mass is shown using a hanging bird cage and can also be demonstrated in class with a simple mass and string. Then an experiment is outlined to find the centre of mass of irregular shapes.
Centre of mass it then related to real life contexts for practice exam questions.
Lesson Objectives:
- Explain what is meant by centre of mass.
- Find the centre of mass for a simple symmetrical object and explain this position.
- Find the centre of mass of an irregular shaped object.
- Apply the principle of centre of mass to real-life problems.
New GCSE AQA Physics lesson on the motor effect written in line with new AQA Physics specification. All questions provided with answers within power point.
Lesson Objectives:
Explain the ‘motor effect’;
Recall and use Flemings left-hand rule
State what is meant by magnetic flux density
Calculate the force on a current carrying wire
Detail how a simple electric motor works
Complete lesson on thermal radiation and surfaces with key content from AQA Physics.
Starter includes picture prompts for key words from heat transfer topic.
Main includes experiment which requires some resources to be prepared with simple materials if not already available but can be easily produced.
Fun infra-red images of different objects and animals for a guessing game.
Plenary uses recent news item on LA reservoir to challenge pupil thinking.
Included are plenty of questions where some can be set as homework.
More lessons to in same format for P1.
https://www.tes.com/member/Nteach
New GCSE AQA Physics lesson on ' Resolution of Forces' written in line with new AQA Physics specification. All questions provided with answers within power point.
The starter provides some simple combination of forces questions to review the subject of resultant forces - one question has two forces acting on different planes which pupils will be unfamiliar with and therefore how to solve - this prompts the lesson.
The intuitive resultant force and direction is highlighted but also how we need to calculate exactly what they are.
The parallelogram/geometric method is taught step by step with a worked example, this is done a second time with another example but with the class prompted to follow it and do the same on their own paper which also allows for discussion of difference in results.
A collection of questions allows pupils to practice use of this method.
This method is then used for inclined planes to explain frictional force acting to put object in equilibrium on inclined planes. Review questions again allow pupils to practice this.
Lesson Objectives:
- Review resolving simple combination of forces.
- Identify when forces are acting on different lines/planes.
- Calculate the resultant force on an object which has equal forces acting on different lines/planes.
- Calculate the resultant force on an object which has unequal forces acting on different lines/planes.
A worksheet is not provided as it is best for pupils to work on their own paper to define their own scales for this methodology.
A completely resourced lesson on GCSE Physics P2 - Terminal Velocity including key content from AQA exam specification and relevant to Edexcel.
The starter begins with a question regarding throwing a penny off the Empire State Building - a common myth surrounding this which is dealt with during this lesson on terminal velocity.
Forces and size represented by arrows are quickly recapped and related to skydiving which allows for good class discussion.
A class activity is detailed which uses just a stopwatch, meter rule and cut-out provided. This task investigates air resistance and it's effect on time to fall to the ground. The conclusions drawn from this can lead to the class to summarise what air resistance is and how it increases and decreases.
Terminal velocity is then explained through an animation of a skydive which is summarised by the class.
An extended activity uses a v-t graph relating to a skydive with key questions to challenge pupils.
The lesson finishes with a TRUE or FALSE quiz and then revisiting the initial started question.
More P2 lessons to come
New GCSE AQA Physics lesson on 'Energy Transfer by Conduction' written in line with new AQA Physics specification.
Choice of two different starters to prompt discussion of heat transfer by conduction. Either looking at cooking using rods through meat or placing ice on different materials to melt.
A series of scenarios are shown involving heat conduction which allow pupils to discuss why things feel hot or cold.
A class experiment is provided which uses different material rods to identify which one conducts heat quickest. The results of this are then discussed with questions to start promoting good scientific investigation skills.
Thermal conductivity is explored by looking at the meaning of each words separately and then together. Pupils are then to put a number of different material in order of thermal conductivity, which is then discussed for common materials which are highly conductive or poorly conductive. This leads onto thermal insulation and some final review questions.
Lesson Objectives:
1) Provide definitions for conductors and insulators.
2) Identify common conductors and insulators and explain in relation to thermal conductivity.
3) Relate thermal conductivity to rate of energy transfer.
4) Explain ways in which rate of heat transfer can be reduced.
New GCSE AQA Physics lesson on ‘Gravitational potential energy, kinetic energy, and elastic energy’ written in line with new AQA Physics specification.
Starter relates the previous lesson on ‘work done’ to the current lesson on energy which also brings in the idea of conservation of energy.
Provided a clear explanation of gravitational energy and how this relates to work done students are given the equation which they can immediately use with the ‘book shelf’ activity. Books each of mass 1 kg are flown across different height shelves where students must then calculate their gravitational potential energy.
The idea of kinetic energy is explored by looking at different size vehicles and their top speeds and what this might mean for their kinetic energy. Following the explanation of the equation the students then complete an activity with different vehicles moving across the screen with their speeds and masses visible for student to calculate the kinetic energy of each.
The Elastic potential energy equation is reviewed and then students are able to apply it with review questions.
The elastic potential energy and kinetic energy equations are reviewed in focus to show how they can be re-arranged to make extension and velocity the subject.
Exam questions are provided as a plenary.
Home work questions are provided for review.
Exam questions are given as a plenary task.
Lesson Objectives:
Provide definitions for kinetic energy, gravitational potential energy and elastic potential energy.
Apply at least two energy equations to problems successfully.
Apply and re-arrange all energy equations to problems.
Relate work done to changes in energy stores.
New GCSE AQA Physics lesson on 'Pressure and Volume' written in line with new AQA Physics specification.
Lesson Objectives:
- Explain the effects of changing pressure on volume of a gas (and vice versa).
- Use the equation ‘PV=constant’ (Boyle’s Law) to solve problems.
- Correctly explain trends in terms of proportionality.
- Explain the effects of quickly compressing a gas on temperature.
New GCSE AQA Physics lesson on Forces and Elasticity written in line with new AQA Physics specification.
Lesson starts by discussing what elasticity is in relation to familiar, everyday objects which then challenge pupil thinking with ‘slo-mo’ videos of these objects being impacted.
Elasticity is then further explored with compression and tension in springs and also related to other objects.
To assist pupils in their understanding of the force extension graphs for materials proportionality is reviewed mathematically.
A class experiment is detailed using simple Physics equipment to test everyday materials for to produce a force-extension graph. Conclusions can then be drawn from the data produced in this experiment.
Hooke’s law is detailed and related to a simply spring extension experiment and used to highlight spring constants.
Plenary poses a summary question for pupils to answer with detailed responses showing their understanding of elasticity.
Learning Objectives:
- Identify objects in compression or tension.
- Explain what is meant by a proportional relationship.
- Describe an experiment to extension of an object due to force applied.
- Interpret and draw conclusions from a force-extension graph.
New GCSE AQA Physics lesson on ’ Pressure and Surfaces’ written in line with new AQA Physics specification. All questions provided with answers within power point.
Starter looks at a balloon being pressed down onto a bed of nails - details of how to set this up simply with thumbtacks (obvious as it is) can be found in the notes box.
Following this a problem of dog trapped on thin ice is presented for pupils to come up with potential rescue attempts to avoid breaking the ice. The concept of pressure is consolidated with the example of thumb tack being pressed into a wall - the equation for pressure is then detailed.
To make use of the pressure equation an elephant and person in stiletto heels are compared mathematically to find which exerts the greatest pressure. Pupils are then guided to calculate the amount of pressure they exert onto the floor whilst standing.
The lesson is concluded with a set of review question.
Lesson Objectives:
- State what pressure is and be able to calculate it.
- Identify the units for pressure.
- Explain the relationship between pressure, force and area.
- Apply knowledge of pressure to different problems.
New GCSE AQA Physics lesson on 'Reflection of Light (Diffuse and specular reflection) ’ written in line with new AQA Physics specification.
Lesson Objectives:
Identify and explain different methods of reflecting waves.
Investigate the law of reflection.
Draw ray diagrams for different objects.
Explain and draw virtual images.
Explain what happens to light rays when they reflect of different types of surfaces.
A completely resourced lesson on GCSE Physics P2 - Momentum including key content from AQA exam specification.
The starter begins with getting pupils to relate size and velocity of moving bodies to momentum.
The equation for momentum is clearly explained and designed with an exercise in rearranging the equation (with the triangle technique). Questions follow to practice the use of this equation.
Momentum is consolidated with a literacy task relating to a Newtons cradle.
Conservation of momentum is detailed in relation to collisions with questions and answers to practice answering questions relating to this.
Conservation of momentum is detailed in relation to explosions with questions and answers to practice answering questions relating to this.
More P2 lessons to come
New GCSE AQA Physics lesson on 'Nuclear Fission ’ written in line with new AQA Physics specification.
Learning Objectives for Fission lesson:
State and explain what is meant by Nuclear Fission.
State the isotopes commonly used in Nuclear Power stations.
Explain the process of a nuclear fission chain reaction.
Identify and explain in detail the key features of a Nuclear Power station.
Complete lesson on the 'Big Bang Theory' and the 'Expanding Universe' with key content from AQA Physics.
Starter uses post-it note from pupils onto the board which allows the teacher to review thoughts from pupils on the origins of the Universe. This is good starter to discuss different pupils beliefs.
Following this a focus on 'theories' discusses what theories are and why this is important in Science and evidence which support theories.
The main part of the lesson guides pupils through the Big Bang Theory explaining the evidence behind this theory (red-shift and CMBR) with clear description of the Doppler effect.
End of lesson uses a written task for pupils to summarise the key points on red-shift. This can then be peer marked by the class using the guidance provided.
A homework is included asking pupils to research the fate of the Universe as this is common question from pupils.
Plenary includes exam style questions.
More lessons to in same format for P1.
https://www.tes.com/member/Nteach
GCSE AQA Physics lesson on Series Circuits using key content from AQA exam specification.
The starter for the lesson revisits models as a way of helping to explain principles of electric circuits. The model used is a simple model which you can do as a class activity or a class demo by simply using string with dots spotted around the string. This helps to summarise key terms before moving onto series circuit rules.
The string model is then used to help pupils explain key series circuit rules which are summarised.
The main uses a circuit experiment requiring the pupils to build 6 different simple circuits using ammeters and voltmeters, results can be drawn with circuit diagrams. (Support sheet included for pupils that may struggle drawing circuits).
Plenary uses a series of questions to apply pupil knowledge of series circuit rules.
Lesson Objectives:
1) Review key words for the electricity topic. (D)
2) Explain the current and potential difference rule for series circuits. (C)
3) Investigate current and potential difference in series circuits. (B)
4) Apply the series circuit rule to problems. (A)
Note: This lesson is formatted is similar content to previously listed 'Series Circuits' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
5 Lessons on GCSE AQA Physics 'Forces in Balance. Lessons include:
- Vectors and Scalars.
- Resultant Forces.
- Centre of Mass.
- Moment, Gear and Equilibrium.
- Resolution of forces (Parallelogram/Geometric method.
Please see individual item listing for details on each individual lesson.
ALL lessons have answer keys in the PowerPoint
New GCSE AQA Physics lesson on ’ Pressure in Liquids’ written in line with new AQA Physics specification. All questions provided with answers within power point.
The lesson starts with a question on the dangers presented to deep sea divers.
How liquids exert a pressure is demonstrated with a visual of a series of containers with different heights of liquid inside whilst highlighting the liquid has mass and therefore weight - this is then linked back to pressure = force/area.
The importance of height in relation to pressure is further reviewed with a water bottle that has holes at different heights - the water jets shooting out is then discussed.
Finally reviewing the importance of density to mass to weight and therefore pressure leads to the formation of the equation, P= ρgh - practice of the use of the equation is provided by looking at the pressure beneath the sea at different depths.
The dangers of deep sea scuba diving are again discussed with the lesson knowledge gained.
The lesson is concluded with a set of review question.
Lesson Objectives:
- Explain how a liquid exerts a pressure.
- Explain how pressure exerted by a liquid can be increased.
- Explain how pressure varies at different points in liquid.
- Calculate the pressure in a liquid column.
New GCSE AQA Physics lesson on ’ Atmospheric Pressure’ written in line with new AQA Physics specification. All questions provided with answers within power point.
(Required for GCSE Physics only Higher tier)
Lesson Objectives:
- Explain how upthrust acts on an object in a fluid.
- Identify the key factors that contribute to upthrust of an object in a fluid.
- Relate pressure in a fluid to upthrust.
- Predict whether a variety of objects will float or sink.
5 lessons covering the unit of Wave Properties for AQA GCSE Physics.
Lesson include:
Properties of Waves
Reflection and Refraction of Waves
Sound
Ultrasound
Seismic Waves
Please read individual resources descriptions for each item in the bundle for further detail.
6 Lessons covering the topic of Electromagnetism for the AQA GCSE 9-1.
Lessons included:
Magnets and Magnetic fields
Magnetic field and current
The Motor Effect
The Generator Effect
AC DC Generators
Transformers and the National Grid
Please take time to review detail of each included resources before purchase to check suitability for your teaching.