I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
New GCSE AQA Physics lesson on 'Newtons Second Law - Force and Accerlation' written in line with new AQA Physics specification.
Starter prompts pupils to discuss how there weight would vary on different planets, this is to set-up how weight is different to mass.
Key terms Force, mass and acceleration are reviewed for clarity leading to the equation F=ma, the units, how it can be rearranged and then review questions to practice the use of.
The equation is then reviewed in terms of proportionality as required by the AQA specification.
Following this F=ma is related to W=mg to highlight that weight is a force and different to mass. This then leads to pupils calculating their mass on different planets - alternatively a task is provided to calculate the mass of a schoolbag on different planets.
For higher tier pupils intertial mass is explained.
Learning Objectives:
- Clearly explain what force, mass and acceleration are.
- Relate how mass and acceleration effect the size of a force.
- Calculate the resultant force on an object by its mass and acceleration.
- Explain the difference between weight and mass.
- What is meant by inertia (Higher Tier)
5 Lessons on GCSE AQA Physics 'Forces and Motion. Lessons include:
- Forces and acceleration.
- Terminal velocity.
- Forces and Braking.
- Momentum.
- Impact Forces.
- Forces and Elasticity.
Please see individual item listing for details on each individual lesson.
ALL lessons have answer keys in the PowerPoint
NOTE: The lenses lesson (listed as lesson 4) had been missing from this bundle, this had now been rectified.
5 lessons covering the unit of Light and Lenses for AQA GCSE Physics.
Lesson include:
Reflection of Light (
Refraction of Light
Light and Colour
Lenses
Using Lenses
Please read individual resources descriptions for each item in the bundle for further detail.
New GCSE AQA Physics lesson on Magnets Fields & Currents written in line with new AQA Physics specification. All questions provided with answers within power point.
Lesson Objectives:
Explain the relationship between electric current and magnetic fields
Draw the magnetic field around a current carrying wire
Identify ways in which an electromagnetic field strength can be increased
Explain what an electromagnet is and how once can be made
New GCSE AQA Physics lesson on ‘Density, Mass and Volume’ written in line with new AQA Physics specification.
Lesson Outline:
Nice simple starter asks pupils to list objects in order of density. Density is then clearly explained with visual effects to provide an example with a definition. Volume is also explained with comparative visuals. This lead to density being considered with volume and then both considered to produce mass - leading m=ρV. Some review questions practice the use of this equation.
Pupils are tasked with finding the density of different objects provided by the teacher (simple shapes of common materials required). REQUIRED PRACTICAL 5
To continue the lesson the story of Archimedes and the gold crown is told featuring some key questioning for pupils. This then leads to pupils finding the density of irregular shaped objects by ‘displacement technique’ (REQUIRED PRACTICAL 5).
To further extend pupil knowledge Archimedes principle of displacement is further explored with floating objects such as ships in water, icebergs and ice on water.
Lesson Objectives:
- State and explain the properties called volume, density and mass.
- Use the density equation to calculate different properties of objects.
- Describe in detail experiments to identify an objects density.
- Explain how large objects such as ships float in water.
New GCSE AQA Physics lesson on ‘distance - time graphs’ written in line with new AQA Physics specification.
Lesson Objectives:
Describe what a distance-time graph can tell you.
Identify different distance-time graph trends.
Use the gradient of a distance-time graph for speed calculations.
Calculate velocities from distance time graphs.
More content to be added to lesson shortly and new worksheets.
Complete set of lessons for AQA GCSE Physics P1 including key content from AQA.
The content of GCSE Physics P1 is covered over 20 separate resourced lessons all in the same format for continuity and direction for pupils (some of which are suitable for double lessons). Please do look at the shop if you wish to look at more detailed breakdowns of the lessons included in this bundle. FREE REFLECTION LESSON AVAILABLE TO DOWNLOAD IN SHOP TO CHECK FORMAT AND QUALITY OF RESOURCES.
Lesson 1- Radiation and Surfaces
Lesson 2 – States of matter, evaporation & condensation
Lesson 3 – Conduction
Lesson 4 - Convection
Lesson 5 – Specific Heat Capacity
Lesson 6 – Heat transfer by design
Lesson 7 – U-values & Payback time
Lesson 8 – Forms & Conservation of Energy (+ energy transfer diagrams)
Lesson 9 – Energy Efficiency, Sankey Diagrams & efficiency calculations
Lesson 10 - Energy & Power of Electrical Devices
Lesson 11 - Cost of Electricity
Lesson 12 – Methods of generating electricity
Lesson 13 - National Grid
Lesson 14 – Wave Properties
Lesson 15 - Reflection
Lesson 16 - Refraction
Lesson 17 – Diffraction
Lesson 18 – Sound
Lesson 19 – Electromagnetic waves
Lesson 20 – Big Bang Theory & the expanding universe
Includes collection of exam style questions in Power Point, useful for AfL and revision.
Lessons are noted with Lesson number as taught by me and also to help identify what resources belong together, you may wish to teach topics in a slightly different order.
I do update the lessons with changes, improvement, additional slides and new worksheets so do check back after download at points to see if there have been additions since your first download.
A completely resourced lesson on GCSE Physics P2 - fuses, circuit breakers and RCCBs including key content from AQA exam specification.
Starter reviews previous unit content on plug wiring and AC/DC current which leads to fuses.
Electrical safety is discussed through the effects of electric shocks and resistance is briefly revisited, reviewing previous P2 content. Resistance in a wire is related to the operation of fuses which is then detailed ( a nice demo is included in the comment box but alternatively a video can be shown).
Circuit breakers and their function is detailed with animations and videos with key questioning on functions.
A written task reviews fuses and circuit breakers.
The detail required by the exam specification is provided (with an alternative slide for classes that would want to know more).
The importance of earthing is explored through questioning (relating back to P2 Statics).
The plenary task uses pictionary to review all key concepts.
More P2 lessons to come
Completely resourced lesson on Forces and Driving with key content from AQA Physics.
Learning Objectives:
- Evaluate different vehicle speeds for stopping distances.
- Explain what happens during braking of a vehicle.
- Identify and explain what can effect the stopping distance of a vehicle.
- Investigate how a drivers reaction time effect stopping distance.
Lesson starts by discussing the speed limit for vehicles against the maximum speeds vehicles can achieve.
A quick review on resultant forces in relation to vehicles is explored through questioning, this leads to the physics of stopping vehicles through braking.
Stopping distances are reviewed with thinking and braking distances, this leads to a class activity on reaction times to consolidate thinking distances.
Summary questions are provided on this topic to finish the lesson.
Plenary poses the starting question again in light of new information pupils will now have.
Completely resourced lesson on Forces and Elasticity with key content from AQA and Edexcel Physics.
Learning Objectives:
- Identify objects in compression or tension.
- Explain what is meant by a proportional relationship.
- Describe an experiment to extension of an object due to force applied.
- Interpret and draw conclusions from a force-extension graph.
Lesson starts by discussing what elasticity is in relation to familiar, everyday objects which then challenge pupil thinking with 'slo-motion' videos of these objects being impacted.
Elasticity is then further explored with compression and tension.
A quick review on proportionality is covered through questioning supporting pupils in key maths skills required.
A class experiment is detailed using simple Physics equipment to test everyday materials for to produce a force-extension graph. Conclusions can then be drawn from the data produced in this experiment.
Hooke's law is detailed and related to a simply spring extension experiment and used to highlight spring constants.
Plenary poses a summary question for pupils to answer with detailed responses showing their understanding of elasticity.
Complete AQA GCSE Physics lessons on Current and Charge.
Starter begins with discussion of why static electricity couldn't be used as the power source for lighting which follows on from the previous lesson on statics (will add varied starters at a later date)
Key circuit symbols & functions are reviewed using the worksheet which can be done with electrical components and highlight the required circuit symbols to recognise by the AQA specification.
The main consists simple circuit building and drawing activities to provide a foundation to build the circuits required for experiments later in the unit.
Questioning leads to a definition of electrical current and electrical charge with the appropriate equations detailed.
Plenary questions are provided and also a true or false activity on the lessons content.
Lesson objectives:
1) Identify circuit symbols and their functions. (D)
2) Build electrical circuits using circuit diagrams. (C)
3) Draw circuits using appropriate symbols. (B)
4) Define the term ‘electrical current’ and carry out current calculations. (A)
Note: This lesson is formatted is similar content to previously listed 'Circuits, current and charge lesson' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
The lesson is summarised with review questions on the content covered.
USES OF NUCLEAR RADIATION
1) Review the properties of the 3 types of nuclear radiation.
2) Identify that nuclear radiation can be dangerous and useful.
3) Explain in detail one or two applications of nuclear radiation.
4) Apply your knowledge of nuclear radiation to exam questions.
Applications explored in detail: geiger-muller counter, x-rays, badges, automatic thickness monitoring, traces, smoke alarms, carbon dating and uranium dating.
A complete and detailed lesson on Radioactivity, focusing on atomic structure, alpha particles, beta particles and gamma radiation. (created with AQA specification content).
Lesson Objectives:
- Recall and detail the basic structure of an atom.
- Relate number of protons, electrons and neutrons to mass and atomic numbers.
- Explain how atoms form ions & identify the isotopes of different elements.
- Explain radioactivity in terms of alpha, beta and gamma radiation.
The lesson guides pupils very clearly through exactly what radioactivity is by starting with the atom and so isotopes.
Starter prompts pupils to find the key words for the lesson using a ‘say what you see’ game.
Following a review of the atoms structure and properties through questioning. A task exploring the periodic table using relative atomic mass and atomic number familiarises pupils with these as they are important later.
Ions are reviewed through a task using visuals of atoms/ions to identify ions or atoms with appropriate charge. This then leads onto explaining what isotopes which can then be linked to unstable elements.
Radioactivity is then explained through a basic description relating to like charges of protons in the nucleus and the required binding energy to hold the nucleus together.
Alpha, Beta and Gamma are then reviewed with visuals of the process to relate to pupils clearly what happens.
A literacy task summarises and reviews the lesson.
A complete and detailed lesson on Radioactivity, focusing on the properties of alpha, beta and gamma radiation & a second lesson on uses of nuclear radiation (created with AQA and Edexcel specification content).
PROPERTIES OF NUCLEAR RADIATION
1) Review the characteristics of the 3 types of nuclear radiation.
2) Identify the penetrating power and range of type of radiation.
3) Explain what is meant by ionising radiation and relate to the three types and applications of this.
4) Compare and contrast the effect of magnetic and electric fields of nuclear radiation.
Pupils are prompted to post questions they have on nuclear radiation so far and in general which can be discussed by the class to serve as some recap on the previous lesson, deal with misconceptions and highlight progress when these may be answered during the lesson (and previous lessons).
Pupils recap the content of the previous lesson on the characteristics of the 3 types of radiation as this is important to the current lesson and exercises their knowledge on the subject.
Penetrating power and range of the types of radiation is covered in detail using animations.
Ionisation is reviewed by challenging pupils through questioning relating to previous content. This is then related to radiation and the types ability to ionise atoms. This lead to descriptions of photographic film and a detailed description of how the geiger-muller counter work with a bespoke animation to assist this.
Deflection of radiation is covered through questioning using clear imagery and animations to support pupils. This leads to literacy based task for pupils to compare and contrast different types of radiation and their path through an electric field.
New GCSE AQA Physics lesson on ' Electric Currents (charge) and energy transfer' written in line with new AQA Physics specification.
The starter is in the style of the 'countdown conundrum' which is for some of the lessons key words.
Questions review key electric current knowledge from earlier current electricity which is relevant to the lesson and also serves as a recap/revision opportunity. Key electrical current concepts are summarised.
Current and charge are related together in an explanation and through the relevant equation with questions for pupils to complete using this.
Energy in circuits is related to voltage supplied by a supply to electrical charge and how this will then deliver energy to components, this also offers the chance to review some circuit rules.
The E = V x Q equation is explained leading to questions using the equation plus ohm's law and circuit rules.
A collection of review questions and some exam style questions conclude the lesson.
Lesson Objectives:
1) Review key content on electrical current.
2) Identify what a unit of charge is.
3) Perform calculations for energy transfer in circuits using p.d and charge.
4) Relate energy transfer by charge to different electrical components.
New GCSE AQA Physics lesson on 'Properties of Waves (transverse and longitudinal) ’ written in line with new AQA Physics specification.
Lesson Objectives:
State what a wave is and does.
Identify the two types of waves and give examples.
Explain wave characteristics.
Calculate waves speed, frequency and wave length.
New GCSE AQA Physics lesson on ‘Life history of a star & formation of a solar system’ written in line with new AQA Physics specification.
Lesson Objectives:
Explain how a star is born.
Recall and detail the different stages in a stars life cycle.
Explain how different elements are formed.
Explain how the solar system formed.
New AQA GCSE lesson on Scalars and Vectors (+ Forces) written in line with new GCSE AQA specification. All questions provided with answers within power point.
Starter asks how far away a school is from a home - this prompts responses from pupils that either follow the road or straight across the field. This introduces the idea of distance and displacement which is explained in detail. This is also used to explain magnitude, scalars and vectors. A series of questions review pupils understanding of distance and displacement.
A quick class activity reviews a number of different variables to classify each as scalar or vector.
Speed and Velocity are identified as a scalar and vector by reviewing the equations and then also related to acceleration. This leads to force the representation of force vectors and scale diagrams.
A quick review of forces and different types of forces lead to force interactions and their effects. A set of review questions provides use of force vectors.
Lesson Objectives:
- Explain how displacement and distance are different.
- Identify and explain scalar and vector quantities.
- Identify different types of forces and how these can be represented.
- Explain what the effect of simple force interactions will have on objects.
New GCSE AQA Physics lesson on ’ Atmospheric Pressure’ written in line with new AQA Physics specification. All questions provided with answers within power point.
Learning objectives:
- Explain what atmospheric pressure is.
- Describe a simple model of earth atmosphere and atmospheric pressure.
- Identify how atmospheric pressure changes with altitude.
- Carry out calculations with atmospheric pressure at different altitudes.