I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
**For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
**
The lesson begins with students recapping on the factors which may affect the distribution of organisms within an environment. Once pupils have discussed their ideas of abiotic and biotic factors which may affect organisms within their habitat they will need to assess their work using the answers provided.
The lesson will then focus on sampling techniques, firstly outlining what a quadrat is and how it is used when sampling an environment. The importance of random sampling is stressed & pupils will need to come up with some ideas as to how random samples could be obtained. Once their ideas have been assessed pupils can then move onto a worksheet which demonstrates how random sampling is conducted and explains how to work out the range, mean, median & mode of a data set.
Transect sampling is now introduced, pupils will watch a video and answer a set of questions watching the video. Once this task is complete pupils can answer the question using the answers provided on the PowerPoint presentation.
The final task is for pupils to perform their own sampling investigation, a worksheet is provided detailing the equipment needed, a method, a species identification key & a results table. Pupils can work in groups of 3 - 5 and use an area close to school such as the sports field / any large grassy area to complete their investigation. Once this is complete pupils can use their data set to find the range, mean, median & mode for each species.
The plenary task is for pupils to write down three facts, three key words and a question based on what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction to evolutionary trees, pupils will be shown how to interpret evolutionary trees and understand the common ancestry between species of organisms. Pupils will then be shown the difference between convergent and divergent evolution.
The next part of the lesson will focus on the work of Woese et al, pupils will watch a video and try to answer questions about Woese and his work, this can be assessed using the answers which can be revealed once the video has been watched. Pupils can then watch a second video, using this video they will then try to complete profile cards for three domains as proposed by Woese – archaea, bacteria and eukaryotes. Pupils can again check their work against the answers provided in the PowerPoint slide.
Pupils will then be given some information on Woese and his work, students will need to use this information along with what they have learnt so far in the lesson to complete a newspaper article on his work and infamous discovery.
The next part of the lesson looks again at evolutionary trees, pupils are shown how to use an evolutionary tree to compare the relationships between organisms. Pupils will then need to complete an exam-style question on evolutionary trees, which can be self-assessed using the mark scheme provided.
The plenary task is for pupils to come up with questions for a set of answers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with students completing a think > pair > share on the types of environments in which organisms live around the world. After a short discussion with the class about the sorts of environments they are aware of, you can move the PowerPoint slide on to identify the types of biomes present on Earth.
The next activity is a copy and complete activity on survival and reproduction as a recap, after pupils have completed this task they can self-assess their work using the answers provided.
Next pupils will be introduced to adaptations, pupils will then watch a video on adaptations and answer questions using the information provided. Once they have completed this task they can mark their work using the answers provided.
Pupils will now read information posters around the room (resources provided at the end of the lesson) and will use this to complete adaptation profile cards for animals and plants from arctic and desert conditions.
The next part of the lesson will focus on extremophiles, pupils will read an article on extremophiles and will read through and underline the descriptions of particular extremophile adaptations. Once this work has been self-assessed pupils will move on to an exam-style question on adaptations, once this task has been completed pupils can either self-assess or peer-assess their work.
The plenary task is for pupils to write three quiz questions on the topic of the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of the lesson focuses on outlining the importance of carbon within the living world, where we might find it in our bodies and the world around us. The first task pupils will be asked to complete is a mind map of the processes they think will add or remove carbon dioxide from our atmosphere. Pupils can discuss in pairs and once complete the answers can be revealed for pupils to assess their work.
The next task is for pupils to watch a video about greenhouse gases, there are a set of questions pupils will be given which they need to answer whilst watching the video. Once this task is complete pupils can assess their work using the answers provided.
The next task is a fill-in-the-blanks task, pupils are given a paragraph about the role of carbohydrates in animals and plants, they need to complete this using the key words provided. Once completed pupils can assess their work using the answers provided.
Pupils will then watch a video about the carbon cycle which details the process involved, once the students have watched the video they will be given a worksheet which they need to complete using the captions provided on the PowerPoint slide. Lower ability students may want to complete this as a group & could perhaps complete whilst the video is playing to assist them. Once they have completed the task pupils can self-assess their work using the answers provided.
The next task may be better suited to higher ability pupils, a set of cards images and captions are provided per pupil and they need to use this to construct their own carbon cycle in their books. Higher ability pupils may want to test their knowledge and turn to their back page to complete this without looking at their previous work
The last task is for pupils to consider the future and how we may be able to implement strategies to help reduce our carbon emissions in order to combat global warming. Pupils are to discuss possible methods/strategies we could use and mind map their ideas in their books.
The plenary task is for pupils to turn to the back of their books and write down a description of as many processes which contribute to the carbon cycle as possible.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed to meet specification points for the NEW AQA Trilogy Biology specification, particularly the ‘Organisation’ SoW.
For more resources designed for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a video on breathing and the organs of the respiratory system, pupils are provided with a list of questions which they will need to answer using the information in the video. Once the video is finished they can then self-assess their work using the answers provided.
Pupils are then provided with an information on breathing and gas exchange, they are also given a worksheet that they will to complete using the information. For lower ability classes it would be best to read through the information as a class, tag-reading, so that they are more familiar with certain words before starting the worksheet.
Once completed the answers provided on the PowerPoint slide mean pupils can either self-assess or peer-assess their work.
The next task is a mid-plenary, pupils will need to copy and complete the sentences and then mark their work.
The next part of the lesson is on adaptations of alveoli, pupils will copy a table off the board and will each be given a card of information. Either discussing on tables or walking around the room pupils will need to complete their table on the four main features of alveoli which make them efficient gas exchange surfaces.
The final activity is an exam-style question worth 6 marks, pupils can close their books and sit in silence to complete this task. Once finished they should mark their work.
Plenary task is to write a twitter message about what they have learnt this lesson, including #keywords.
All resources are included in the lesson, some are found at the end of the PowerPoint.
Please leave a comment if you have any questions, any feedback would be appreciated :)! Thanks!
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW and for higher tier pupils.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an outline of the sorts of stimuli that plants response to - light, moisture & gravity - pupils are asked to think > pair > share why they think that it is important that plants respond to these stimuli.
Pupils are then introduced to the term ‘tropism’ and are shown the sort of tropisms plants undergo due to light and gravity. Pupils will then watch a video on this topic and will need to answer questions whilst watching, this work can then be self-assessed once they have finished the video.
Pupils will then be provided with posters of information which outlines the role of auxins during phototropism and gravitropism, using this information pupils will need to complete tasks on their worksheet. Once this task has been completed pupils can either self or peer-assess their work using the mark scheme provided.
The final activity is an exam-style question which pupils should complete in silence and as an extra challenge they could try and complete it in the back of their books, not using any notes from the lesson. The work can then be self-assessed using the mark scheme provided.
The plenary task is for pupils to summarise what they have learnt in three sentences, using the list of key words provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed to meet specification points for the new AQA GCSE Trilogy Biology ‘Cells’ SoW.
For more resources designed to meet specification points for the new AQA GCSE Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by pupils being introduced to the idea of stem cells, what they are and why they are important. Pupils will then watch a video about stem cells, the difference between adult and embryonic stem cells and their importance in medical research and treatments. Pupils will answer questions whilst watching the video and can self-assess their work using the answers provided once it has finished.
Pupils will then need to summarise what they have learnt so far by completing a fill-in-the-blank task, this can be copied off the board or summarised in their book.
The next activity is on stem cells in plants, pupils will be given some information on the board and will then need to answer questions about this information.
The next activity will focus on the social, moral and ethical implications of using stem cells for medical research purposes. Pupils will need to read opinion/fact cards about the use of stem cells and firstly will need to discuss the pros and cons of using stem cells for medical research. The second task is for pupils to sort the information cards into ‘fact’ or ‘opinion’ columns - this can be self-assessed using the answers provided.
The final plenary task is an exam-style question about use of stem cells, pupils can then self-assess their work.
This lesson is designed for the NEW AQA Combined Science:Trilogy Biology GCSE, particularly the 'Bioenergetics' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins by students thinking about the raw materials needed for plants to photosynthesise and which factors might limit the rate. The three factors which students will need to learn about are then revealed - carbon dioxide, light intensity and temperature. Three limiting factor graphs are then shown for each of these factors and students need to have a go at explaining what the graphs are showing, as a class discussion. Pupils will then need to complete a fill-in-the-blank task and self- their assess their work using the answers provided.
Next pupils are shown a green leaf and a variegated leaf and are asked to think>pair>share which leaf they believe will have a higher rate of photosynthesis, and why. This then leads to pupils learning that less chlorophyll means less photosynthesis will take place, which could lead to stunted growth.
The next part of the lesson focuses on pupils being able to use practical equipment to set up an investigation which measure the effect of light intensity on rate of photosynthesis. Pupils will firstly be given some images of equipment they could use and are asked to come up with a potential method for this investigation. After this pupils are then shown a video where they have to answers questions about the variables in this investigation and finally they are given a set of results to plot data and analyse it.
The plenary is a silent 5 task where pupils need to answer questions about what they learnt this lesson on their own in their books.
All resources are included either at the end of the presentation or as a separate file.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson starts with an introduction to accommodation, in pairs pupils will be given either information on how the eye focuses on distant objects or on nearby objects. Pupils will have to teach each other about the information they have and complete the questions listed on the PowerPoint slide. Once this task is completed it can be assessed using the mark scheme provided.
The next part of the lesson focuses on common defects of the eye, specifically myopia and hyperopia. Pupils will need to use posters of information placed around the room/on their table to complete a fact file on both of these conditions which includes a description of the disease and of the treatments available.
Pupils will now consider some of the ways in which these common eye defects can be overcome, pupils will be given a card sort in pairs describing different technologies in treating these conditions. Pupils will need to read these cards and produce a table which sums up the advantages and disadvantages of these treatments.
The last activity is an exam-style question which pupils can complete in silence, once finished they can use the mark scheme to self-assess their work.
The plenary task is an anagram challenge, pupils should unscramble the words to identify key words they have learnt on the topic of the eye.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier pupils.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will firstly be introduced to two further hormones in addition to auxin: gibberellins and ethene. The first task is for pupils to watch a video on the role of auxins and gibberellins in plant growth and development. Pupils will answer questions whilst watching the video and then self-assess their work using the mark scheme provided.
Once pupils understand how gibberellins and auxins work they are asked to think > pair > share how these two hormones might be utilised by farmers/gardeners to help increase yield. Pupils can come up with a mind map in their books of their ideas.
The next activity is another video, this one is on the uses of hormones in horticulture and agriculture. Pupils are asked to answer questions whilst watching the video, this work can again be self-assessed using the mark scheme provided.
Pupils will then be given an information sheet on plant hormones, outlining further roles of auxin and gibberellins and also the role of ethene. Pupils will need to answer questions using this information.
The final activity is a true/false task on the topics of plant hormones.
The plenary task is for pupils to write a text message to their friends outlining what they have learnt this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson aimed at meeting specification points within the new AQA GCSE (2016) Biology 'Cells' SoW.
For more resources aimed for the new AQA GCSE specification please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will start by looking at the differences between unicellular and multicellular oganisms and what it means for a cell to be 'specialised'.
Pupils will then focus on the difference between stem cells in animal and plant cells, they will read a bit of information on this topic and answer questions in their books. Pupils can then peer-assess their work using the answers in the PowerPoint.
In the next task Pupils can either use posters places around the room or they each get given a different card with a different specialised cell and they need to complete a table of information on the structure and function of various specialised cells. These include: palisade cell, white blood cell, nerve cell, red blood cell, ciliated epithelial cell, sperm and egg cell.
The last activity pupils will need to complete a past-paper question to assess their knowledge. Pupils can then self-assess their work using the mark scheme provided.
All resources are included, please review with any feedback :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to fossils, a definition of a fossil and a task for pupils to think > pair > share how the remains of dead organisms could be preserved for millions of years. After a short classroom discussion about the ideas pupils have come up with, pupils can move on to the next task. Pupils will each be given a different piece of information on the ways in which fossil remains can be preserved. Pupils can move around the room and discuss their cards of information and use each others to take notes on these processes.
Pupils will then watch a video on how fossils are formed, using this video pupils will need to answer questions in their books. This work can be self-assessed using the marking criteria provided.
The next part of the lesson focuses on why fossils do not provide a complete record of evolution. After this has been explained, using the information and images provided on the PowerPoint slide, pupils can complete some quick check questions on what they have learnt this lesson. Once complete pupils can mark their work using the answers provided.
The final task is for pupils to complete a table to demonstrate the evolution of the horse, they will each be given a card of information on a particular stage of evolution. They can use each other to complete the full picture of how the horse evolved, completing their own table in chronological order.
The last task is a set of exam-style questions on what pupils have learnt this lesson, they can answer these at the back of their books for an extra challenge. A mark scheme is provided for pupils to assess and correct their work once it is complete.
The plenary task is for pupils to summarise what they have learnt this lesson as three facts, three key words and a question to test their peers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a recap on genes and inheritance with a fill in the blank task, pupils can then mark their work using the mark scheme provided.
The first task is on sexual reproduction , pupils will watch a video and will need to note down any facts about sexual reproduction that they can remember from the video. They can then assess their work given the list provided. Pupils will then be given a list of questions and will watch a second video on asexual reproduction, pupils will then need to answer questions about asexual reproduction using the video. The answers to these questions can be assessed using the mark scheme provided.
The next activity requires pupils to copy down a flow diagram, filling in the blanks, to show how male and female gametes fuse together during fertilisation and develop into an embryo. This task focuses on chromosome numbers during this process. Pupils will now be provided with a set of jumbled statements, pupils will need to sort the statements into correct columns - they are either describing asexual or sexual reproduction. Pupils can mark their work using the answers provided.
The final activity is for pupils to answer an exam-style question on this topic, they can complete this in silence and at the back of their books to challenge them further. This work can then be assessed using the mark scheme.
The plenary activity is for pupils to unscramble the anagrams to reveal 6 key words taken from the lesson.
The plenary activity is for pupils to summarise the 5 main key words they have learnt that lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson starts with a recap from the previous lesson showing gametes fusing during fertilisation and the changes in chromosome numbers. The first task is for pupils to watch a video and answer a set of questions whilst they are watching, once the video is complete they can assess their work using the mark scheme provided.
Pupils will then be given a worksheet with a diagram of meiosis occurring and statements where pupils will need to fill in blanks to complete the correct steps in the process. Pupils can assess their work using the answers provided.
Pupils will then be shown the different between diploid and haploid cells and how this can be depicted in a diagram, they will be shown the changes that occur going from two haploid gametes to a diploid zygote.
The next activity is for pupils to sort statements into two columns - mitosis or meiosis. Once this activity has been completed pupils can mark their work using the answers available.
Pupils will now complete a quick check, pupils will answer questions about the topic of meiosis into their books. For higher tier pupils they can be challenged by completing the questions at the back of their books without using their notes. Once completed the work can either be self-assessed or peer-assessed.
The final activity is an exam-style question which higher ability pupils can complete at the back of their books, this can then be assessed usng the mark scheme provided.
The plenary activity is for pupils to pick a plenary between summarising the work from the lesson in three sentences or writing a definition for a set of key words.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson designed to meet specification points for the new AQA GCSE Trilogy Biology 'Cells' SoW.
For more resources designed for the new AQA GCSE Trilogy Biology, Chemistry an Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by pupils completing a comprehension task, they will need to read details on the history of the microscope and answer questions into their books. Once finished pupils will need to then self-assess their work using the answers provided in the PowerPoint presentation.
Pupils are then introduced to the idea of 'resolution' - the definition for which they need to know so pupils could write this down in their books.
The next part of the lesson will focus more on maths skills related to microscopy, pupils will firstly need to calculate the overall magnification of a microscope using the objective lens and eyepiece lens magnifications. The next skill pupils will learn is to change units of measurement from cm > mm > um > nm.
The next calculation pupils will need to know is how to calculate the actual size of a specimen being observed down a microscope. Pupils will be introduced to the calculation and then given a couple of example questions, pupils can attempt to have a go at these themselves. The following slide goes through step-by-step how you would calculate the answers to these questions.
The plenary is a 'Silent 5' task where pupils will need to answer questions based upon what they have learnt during the lesson.
This lesson is designed to meet specification points for the NEW AQA Trilogy ‘organisation’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by pupils being introduced to what an enzyme is, what it looks like and it’s role in the body.
Pupils will then watch a video and will need to answer questions (provided) whilst watching the video, they can self-assess their work using the answers provided.
Next pupils are shown a diagram of an enzyme’s lock & key mechanism in action, they will need to draw their own diagram of this process and include labels to show what is happening.
Next, pupils are introduced to the factors that can affect the rate of enzyme action. They are given a set of data on how temperature affects the rate of reaction. Pupils will need to plot this data onto a graph, they are then given a set of labels which they will need to match to certain points on their graph to describe what is happening.
In the next task pupils will need to complete sentences to explain the data that the graph is displaying, pupils can self-assess their work using the answers provided.
The very last task requires pupils to look at the effect of pH on the rate of enzyme action, pupils will need to think about the pH needed for enzymes in the stomach to work. They can discuss this question or come up with an answer themselves.
The plenary task is a fill-in-the-blank task for pupils to complete in their books, this can be self-assessed using the answers provided.
Any questions please let me know by leaving a comment, and any feedback is much appreciated :)!
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a video and a set of questions which pupils will need to answer about extinction and try and come up with a definition for this term. Once completed pupils can check their work against the answers provided on the PowerPoint.
The next activity is for pupils to think > pair > share ideas about the sorts of changes that might occur within an organisms environment to bring about extinction. Pupils can discuss with their partner and create a mind map of their ideas in their books. Once pupils have completed this you can reveal some of the reasons for environmental change on the PowerPoint slide and pupils can check what they have got against the answers, adding in any they didn’t manage to get.
The next activity is for pupils to read some cards of information about the causes of extinction, pupils can work in pairs or groups to read through these causes and summarise each one in their books.
To put thees causes into context, the next activity is for pupils to look at examples of organisms which are at the brink of extinction and the reasons why. Pupils will be given a set of cards with information about a range of animal and plant organisms which are at different stages on the IUCN red list. Pupils will need to complete a table of information to describe the habitat and reasons why four of these organisms are endangered.
The last part of the lesson will focus on mass extinctions, pupils will watch a video and answer questions about the causes and repercussion of mass extinction events. Once completed pupils can mark their work against the assessment criteria.
The plenary activity is for pupils to pretend they are a conservationist campaigning to protect an organism of their choice, they need to write a twitter message to their followers to raise awareness of the factors which may be critically affecting the organism.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is lesson is designed to meet specification points for the new AQA Trilogy Biology specification, specifically the 'Cells' SoW.
Please find more resources for the NEW Trilogy GCSE Biology, Physics and Chemistry specifications in my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins by identifying the differences between osmosis, diffusion and active transport. Pupils will then watch a video and answer questions about the process of active transport whilst watching. Once finished pupils can self-assess their work using the answers provided.
Pupils will then sort statements about the three types of movement - diffusion, osmosis, active transport - into three columns, pupils will then self-assess their work.
The next part of the lesson focuses on the importance of active transport to living organisms, pupils will be introduced to two examples - mineral ion uptake in plants and absorption of glucose in humans. Pupils will then need to answer questions on this topic.
The plenary is a exam-style question on active transport, pupils can again self-assess their work using the mark scheme provided.
This lesson is designed for the NEW AQA Combined Science:Trilogy Biology GCSE, particularly the ‘Bioenergetics’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction into how farmers and commercial plant growers maximise their yield and therefore their profit.
The main activity of the lesson involved pupils answering a variety of questions using information posters which can be positioned around the room or on desks, if you do not want pupils to move around. This activity is likely to take 25 minutes at least, once finished pupils can sit back in their seats and self or peer assess their work using the mark scheme provided.
The next activity should take around 15 minutes, it is an exam-style question involving plotting data and then analysis of this data. Pupils can complete and again self or peer assess their work.
The plenary activity is a 3-2-1 task, 3 facts, 2 key words and 1 question about the lesson today to test your peers.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know via the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, it contains some higher-tier only content.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson firstly begins with a description and definition for gene expression in a cell, this leads onto introduce the idea of a mutation. Pupils are given a definition of a mutation and are asked to consider whether mutations are always negative effects. This leads onto show the ways in which a mutation can affect a protein/enzyme in the body and the effect that could have on the function of body processes. Next is a quick check-silent 5 activity to assess students knowledge of gene expression and mutation, pupils can answer the questions in their book and mark their work using the answers provided. There is on further activity on mutations, pupils will watch a video on sickle cell anaemia and answer questions in their books.
The next section of the lesson is on inheritance, firstly pupils are introduced to the idea of alleles and are shown the genotypes of three rabbits with either black or white fur colour to show that it is the combination of alleles that determines this characteristic. Pupils are asked to complete some questions based on what they have learnt so far, which can be assessed using the answers provided.
Next pupils are introduced to the difference between genotype and phenotype, homozygous and heterozygous genotypes. Pupils will then be given a set of images and are asked to identify whether these images are representing a genotype or phenotype, if it is a genotype they are asked to determine if it is homozygous or heterozygous. This work can then be assessed.
Pupils are now shown how to construct a genetic diagram using a worked example, they are then given another genetic cross for which they need to construct their own genetic diagram and work out the percentage of each offspring that would be present, this work can be self-assessed.
The final task is on sex determination, pupils are introduced to the idea of X & Y chromosomes and are shown the combinations needed to produce a male or a female. Pupils will need to construct their own genetic diagram to show the percentage chance of a baby being male or female. This topic can also be assessed using an exam-style questions for higher ability pupils.
The plenary activity is for pupils to write a glossary in the back of their books for any new key words they have learnt this lesson
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)