Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

784k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE (2016) Chemistry  - Reactions with alkenes
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reactions with alkenes

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Students are firstly introduced to the idea of a ‘homologous series’ and look at how this applies to the pattern of formulae for the alkene series. Students are then asked to think about the differences between complete and incomplete combustion from what they have learned in previous lessons, before being shown the differences between complete/incomplete combustion of alkenes and how this explain why alkenes are rarely used as fuels. Next, students will watch a video on the reactions of alkenes with water and with halogens, using the information in the video they will need to answer a set of questions. The answers to this task are provided in the PowerPoint so that students can self-assess their work. Pupils will now be given a set of symbol equations between different alkenes and halogens, pupils will need to complete these calculations in their books, ensuring that they are balanced. Once complete, pupils can self-assess their work. The last part of the lesson focuses on the reaction of alkenes with hydrogen, students will be shown a simple hydrogenation reaction and will also be given some information about hydrogenation and whether it is a good or bad process in the production of margarine spreads from vegetable oils. Students will need to read this information and then answer a set of questions, this work can be self-assessed using the answers provided in the PowerPoint presentation. The plenary task is for pupils to write a Whatsapp message about what they have learned in the lesson today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Glass, ceramics & composites
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Glass, ceramics & composites

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Using Our Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students are firstly given a set of different objects on their desks and they are also provided with a list of properties, for each object students need to use the words from the list provided to identify the object’s properties. This work can be self-assessed using the mark scheme provided. The next task for pupils to complete is an ‘Each one, teach one’ task - in pairs, pupils are either given information about glass or ceramics, they need to learn the information and teach each other so they are able to complete a table of information on both. This work can then be peer or self-assessed using the mark scheme provided. Next, pupils will watch a video about different composite materials - they will need to answer a set of questions whilst watching the video and this can be marked using the mark scheme provided. The next activity is for pupils to investigate the differences between reinforced concrete vs. normal concrete. Finally, students will complete a ‘Quick Check’ activity - pupils will need to answer a set of questions to summarise what they have learned this lesson. This work can be self-assessed using the mark scheme provided. The plenary activity requires pupils to write a Whatsapp message to their friends outlining what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Chemical Reactions
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Chemical Reactions

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C3 ’Reactions’ module. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to chemical reactions, students will read a paragraph of information on chemical reactions. Using the information students will answer a set of questions, this task can then be self-assessed using the mark scheme provided once complete. Students will now watch a video about chemical reactions, they will need to write down as many things you might see/hear/feel during a chemical reaction. This work can the be self-assessed using the mark scheme provided on the PowerPoint presentation. Students will now summarise what they have learned so far by completing a ‘fill-in-the-blank’ task, this work can also be marked and corrected using the anwers provided Students will now consider whether chemical reactions are useful or now, they will be given a list of different chemical reactions and they will need to sort these into two columns - useful or not useful. Students can then self-assess this task when it is complete. Next, students will watch a video on the differences between chemical and physical changes. Whilst watching the video students will need to answer a set of questions, this work can self-assessed using the mark scheme provided. The last task requires students to determine whether a set of examples are demonstrating a chemical or a physical change. They could complete this task as a class, using mini whiteboards. The plenary task requires students to write three sentences to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Pure substances & mixtures
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Pure substances & mixtures

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Pure substances and mixtures’ SoW. This lesson starts with a ‘Think > Pair > Share’ task on the differences between an element, compound and a mixture. Pupils will share their ideas as a class before definitions and a diagram for each is revealed on the PowerPoint presentation. The next task requires pupils to ‘Think > Pair > Share’ their ideas about what it means for a substance to be ‘pure’. Again, their ideas can be shared with the class before a definition of purity is revealed. Next, pupils will complete an investigation into the purity of water - they will be provided with three unknown liquids and conducting a range of tests they will need to determine which one is pure water, which is sea water and which is mineral water. They will record their results in a table and then present their findings to the class. Next, students are shown how chemists are able to analyse substances and determine whether they are pure or whether they are a mixture by determining their melting/boiling points, to see if it is at a fixed point or not. Pupils will then watch a video on this topic and will need to answer a set of questions, they can mark this work using the answers provided. Pupils will then be shown two examples of common formulations - paint and cleaning product. Lastly, pupils will then complete a ‘Quick Check’ task - answering a set of questions on what they have learned this lesson. They will then mark their work using the answers provided. The plenary task is for pupils to complete one of the sentence starters provided to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Compounds
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Compounds

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C1.2 ’Elements, Atoms & Compounds’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a video on elements & compounds, students will answer a set of questions whilst watching the video. This work can then be self-assessed using the mark scheme provided. Next, students are given a set of diagrams which depict either elements or compounds. Students need to identify whether the picture is of an element or compound, then write an explanation for their choice. This task can then be self-assessed using the mark scheme provided. Next, students are given a set of two diagrams - one is of a mixture and the other is of a compound. Students are asked to ‘Think > Pair > Share’ their ideas on which is a mixture and which is a compound, giving an explanation for their answer. Students can feed their ideas back to a class discussion, before the definition for a mixture vs. a compound is revealed using the PowerPoint presentation. Students are then asked to copy and complete a set of sentences to summarise the differences between elements, mixtures and compounds. This work can be marked and corrected using the answers provided on the PowerPoint. Next, students are asked to complete an investigation looking at the properties of a mixture of iron and sulphur before and after it is heated. Before it is hated, students should identify that iron and sulphur is a mixture, with iron showing magnetic properties. Then, the mixture is heated and students are asked to decide whether it is now a mixture or a compound, they will also need to test the magnetic properties of this substance to see whether it has changed. The plenary task is an exit card, students are asked to write down three things they have learned this lesson, five key words and one question to test their peers on what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Rate of Reaction: The effect of concentration and pressure
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Rate of Reaction: The effect of concentration and pressure

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with students introduced to the idea of concentration in terms of no. of particles per cm3. Students will then need to ‘Think > Pair > Share’ their ideas of how an increase in concentration may affect the rate of a reaction. Students can use their ideas from this first task to make a prediction for the investigation into the rate of reaction between sodium thiosulphate and different concentrations of HCl. Students will need to conduct this investigation using the practical sheet provided, record their results, plot a graph of their results and complete a conclusion. Students can assess their explanation of the results they collected using the answer provided in the PowerPoint presentation. The next part of the lesson will focus on the effect of pressure on the rate of a reaction. Students will firstly be introduced to the idea of an increasing pressure leading to an increase in the number of particles per cm3, using this information and the diagrams provided pupils can ‘Think > Pair > Share’ their ideas about how an increase in pressure would affect the rate of a reaction. Their answer to this question can self-assessed using the answers provided. Next, students need to work through a set of levelled questions on the effect of pressure on the rate of a reaction. This work can be self-assessed using the answers provided on the PowerPoint. The last task is for pupils to plot a set of results onto graph paper, using these data they can calculate the initial rate of reactions for two concentrations of HCl. Students can assess their work using the mark scheme provided on the PowerPoint. The plenary task is for pupils to write down three quiz questions (and the answers!) to test their peers knowledge of what they have learned in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Reversible Reactions
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reversible Reactions

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to reversible reactions, including the example of thermal decomposition of ammonium chloride. Pupils will then conduct an investigation into the energy changes which occur during a reversible reaction, using the practical sheet provided students will carry out the experiment and record their results in the table provided. The reversible reaction from this investigation is then shown on the board, with an explanation of the energy changes that are taking place as the reaction moves in either the forward or reverse direction. Pupils will now watch a video on energy changes which take place during a reversible reaction, using this they will need to answer a set of questions. This work can be self-assessed using the answers provided on the PowerPoint presentation. Pupils will now need to complete a ‘Quick Check’ task which includes questions within the module of ‘Rates of Reaction’, students can then self-assess or peer-assess their work using the mark scheme provided. Finally, pupils can complete a crossword which summarizes definitions used within the ‘Rates of Reaction’ module, the answers for this are provided for self/peer assessment. The plenary task required pupils to complete an exit card listing 3 things they have learnt today, 5 key words and 1 question to test their peers knowledge of a subject. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Testing for positive and negative ions
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Testing for positive and negative ions

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. Firstly, students will conduct an investigation which carries out flame tests to check for the presence of different positive ions. Pupils will need to follow the method provided and record their results in a table in their books, once this task is complete they can self-assess their work using the mark scheme provided. Pupils will then watch a video on the use of sodium hydroxide solution in the test for positive ions, they will need to answer a set of questions using the information provided in the PowerPoint presentation. The answers to this task are provided in the PowerPoint so students can self-assess their work. Next, pupils will need to complete a flow diagram to demonstrate the steps involved in identifying a range of positive ions by using sodium hydroxide solution, this task can be self-assessed using the mark scheme provided. To assess their knowledge of flame tests and use of sodium hydroxide solution in identifying positive ions, pupils will need to fill in the blanks in a summary table. This work can be self-assessed using the answers provided. The next part of the lesson will focus on negative ions, firstly students will watch a video and will need to answer a set of questions using the information provided in the video. This work can self-assessed using the answers provided. Lastly, students will practice writing ionic equations for reactions which lead to the identification of either positive or negative ions before a final set of summary questions. Answers to these tasks are provided for self or peer assessment. The plenary task is for pupils to write a set of quiz questions to test their peers knowledge of what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Polymerisation
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Polymerisation

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Pupils will firstly be introduced to the idea of polymers and will provided with a definition, they will then be given a set of information in pairs - one will be provided with polyethene and the other will be provided with polypropene. Pupils will then need to complete an ‘Each one, teach one’ task where they teach other other about the polymers - the monomers they are made up of, their properties and also products in which they are used. This task can be self-assessed using the mark scheme provided. Pupils will now watch a video on polymerisation, using the video they will need to answer a set of questions which can then be self-assessed using the mark scheme provided. The lesson will now focus on condensation polymerisation, pupils will firstly be given a worksheet with a set of questions which will need to be answered using a set of information posters that will be placed around the room. This work can be either peer assessed or self assessed using the answers provided in the PowerPoint presentation. The last task requires pupils to complete an ‘Exam-style question’ on the topic of what they have learned this lesson, once this is complete students can assess their work using the answers provided. The plenary task is an anagram challenge, pupils will need to unscramble the anagrams to reveal key words from today’s lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Limiting reactants & percentage yield
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Limiting reactants & percentage yield

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students will firstly be introduced to the concept of a limiting reactant, using the example of hydrochloric acid and magnesium. Pupils will then be shown the steps to take to work out the limiting reactant of a reaction, using a worked example. Using this example students can then complete a set of questions on limiting reactants, the answers these questions are provided in the PowerPoint presentation. Next pupils will watch a video on percentage yield, they will need to answer a set of questions using the video. Once complete pupils can self-assess their answers against the answers provided. Pupils will then be provided with a set of steps to help them work out the percentage yield of a chemical reaction, pupils can check they have completed this task correctly using the answers on the PowerPoint. The last task is a worksheet of percentage yield problems, pupils will need to show their working for each question. The answers are again provided on the PowerPoint presentation for pupils to self-assess their work. The plenary task is for pupils is a key word and Ar bingo task, pupils should choose 6 keys words/relative atomic masses from th board. The teacher will then read out clues, if students think that they have the word/Ar they can cross it out, first to cross all 6 our shouts bingo! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Physics - Electricity
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Electricity

11 Resources
This bundle of resources contains 11 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Electricity’ unit for the NEW AQA Physics Specification. Lessons include: Electrical circuits Electrical charges & fields Current & charge Electrical current & energy transfers Electrical power & potential difference 6 Resistance & potential difference 7 Series & parallel circuits 8 Cables & plugs 9 Alternating current Appliances & efficiency Current-Potential difference Graphs The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
KS3 ~ Year 8 ~ Composite Materials
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Composite Materials

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.2 unit on ‘Metals & Other Materials’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with an introduction to composite materials, students will be told the definition of a composite material and will be given two examples - MDF & reinforced concrete - including details on the physical properties of these materials. Students will now carry out an investigation into the properties of reinforced concrete vs. concrete. Students should follow the instructions on the sheet to complete the investigation, once complete students can test the concrete by performing some tests on the blocks. Students will now be introduced to other composite materials, firstly carbon-fibre, students will listen to an audio piece of a cyclist explaining the usefulness of carbon-fibre for bikes and bike accessories. This task can be self-assessed using the mark scheme provided, once complete. Next, students will complete an ‘Each one, teach one’ task. For this, students will be in pairs and will need to learn a piece of information about a composite materials - either nylon or glass-fibre-reinforced aluminium. Once learned, students will then teach their partners about the substances used to make the material, the properties of the materials and some examples of uses. Students will use the information to complete a summary table, this work can then be marked and corrected using the mark scheme provided. The plenary task requires students to come up with a question for five answers which are provided, this will assess students knowledge of what they have learned through this module. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Solubility
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Solubility

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.3 unit on ‘Separation Techniques. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a ‘Think > Pair > Share’ task, students are asked to describe what happens when salt is mixed with water, using the particle model to help them with their explanation. After a short discussion, a diagram is revealed to show students what happens when more and more salt is added to water, eventually reaching a saturated solution. Students will now be provided with a definition for ‘solubility’, following this students will complete a task whereby they will match the key word to the correct definition. Students can self-assess their work once this is complete. Next, students will complete an investigation to work out how much sugar can be dissolved in 100g of water - an equipment list and method is provided for students to follow. Students will now be given some data on the solubility of two salt compounds - potassium chloride and sodium chloride - as temperature increases from 0-100 degrees celsius. They will be required to draw a graph to display this data and describe the relationship between temperature and solubility. This work can be self-assessed once it is complete, using the mark scheme provided. Lastly, students will complete a ‘copy and correct’ task where they will need to copy a paragraph into their books and make amendments so that it correctly summarises what students have learned this lesson. The plenary task is a 3-3-1 reduction, students will need to write down three facts, three key words and 1 question to test their peers knowledge of what was learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
KS3 ~ Year 7 ~ Diffusion
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Diffusion

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C1.1 ’Particles & their Behaviour’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the process of diffusion, spraying perfume particles in the air is used as an example. Students are shown, by way of a particle diagram, how particles spread from an area of higher concentration to a lower concentration. Students are now asked to ‘copy and complete’ a paragraph to define the process of diffusion, this task can be assessed using the answers provided. Next, students will need to sketch diagrams demonstrating the various stages of diffusion, and will need to match the correct statements to the correct diagrams. This work can be then be self or peer assessed using the mark scheme provided. The next part of the lesson looks at factors that affect diffusion, students are firstly asked to ‘Think > Pair > Share’ their ideas on the factors which might affect the rate of diffusion. After students have fed back into class discussion, the answers are revealed for students to note down in their books. They will then look more closely at the effect of temperature on the rate of diffusion by watching a video and then summarising what they have learned by completing a fill-in-the-blank task. Two other factors which affect the rate of diffusion are particle size and state of matter. Students are shown a diagram and given an explanation for how particle size affects the rate of diffusion - the heavier the particle the slower it is to diffuse. Students are then asked to consider whether particles will diffuse more quickly in the gaseous state, compared to liquid or solid state. Their answers can be discussed in pairs before feeding back to the class, the answers can then be revealed using the mark scheme provided. Lastly, students will need to explain, in terms of particles, why a solid is unable to undergo diffusion whereas a gas and a liquid are able to. The plenary activity requires students to write down 3 facts and 3 key words from the lesson and pose one question to test their peers on what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Indicators & pH
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Indicators & pH

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C4 ’Acids & Alkalis’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson starts with a question for students to consider, two ideas are presented to them - one student suggests that we could taste the unknown contents of two beakers to determine if it’s an acid/alkali whereas the other students suggests this is dangerous and we should use a chemical indicator instead. Students should discuss their ideas about who is right and feedback to a class discussion. This leads into an introduction to chemical indicators such as litmus paper and universal indicator. Students will now watch a video on the use of litmus paper, whilst watching the video students will need to fill in the blanks on the table provided. This work can then be self-assessed using the mark scheme provided. Next, students will summarise what they have learned so far by completing a fill-in-the-blank task, this also can be marked and corrected using the answers provided on the PowerPoint. The next activity requires students to read a piece of information on indicators & pH, using this information students will need to answer a set of questions. This task can be marked using the mark scheme provided on the PowerPoint. Students can now complete an investigation, using universal indicator to determine the pH and acidity/alkalinity of different substances. Students can use the practical sheet to conduct this practical, recording their results in an appropriate table. The final task is a literacy check, students will need to link groups of words together in a sentence to summarise what they have learned this lesson. The plenary task requires students to write a Whatsapp message telling them what they have learned in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Collision Theory: The effect of temperature and surface area
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Collision Theory: The effect of temperature and surface area

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students are firstly introduced to collision theory, outlining the conditions which need to be in place in order for a chemical reaction to occur. Next students are asked to ‘Think, Pair, Share’ factors which they think may affect the rate of a reaction, once students have had chance to discuss this they are introduced to the four main factors which they study within this topic. Firstly, the lesson will focus on surface area, this factor is explained using apple slices turning brown as an example, students are then introduced to the relationship between surface area to volume ratio and the rate of reaction. Students will then need to complete a worksheet of surface area to volume ration calculations, this can then be self-assessed using the mark scheme available. Students will now work through a set of levelled questions looking at data on the effect of surface area on the rate of reaction, this work can be self-assessed using the mark scheme provided in the PowerPoint presentation. The next part of the lesson will focus on the effect of temperature on the rate of reaction, students will firstly need to answer questions whilst watching a video, this work can then be self-assessed using the mark scheme. Next, students will carry out an investigation into the effect of temperature on the rate of reaction between sodium thisulphate and hydrochloric acid. Students will need to collect data and use this to work out the rate of reaction at different temperatures, a worksheet is provided for this task. The last task is for pupils to complete a ‘Quick Check’ set of questions in order to assess what they have learned this lesson, students can then either peer-assess or self-assess their work using the mark scheme provided. The plenary task is for pupils to write a twitter message about what they have learned this lesson, included a hashtag of key words. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Finite & Renewable Resources
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Finite & Renewable Resources

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a ‘Think > Pair > Share’ task, pupils will need to consider the definitions of the terms ‘Finite’ and ‘Renewable’. After a discussion in pairs and as a class, the definitions for these words can be revealed which pupils can write in their books. Next, pupils will watch a video on the availability and sustainable use of Earth’s resources, pupils will need to answer a set of questions whilst watching these videos and can self-assess their work once finished. Pupils are now introduced to a variety of natural resources which are getting used up by the chemical industry, students are given a list of these raw materials and are then asked to consider what factors might determine how quickly they may run out and the uncertainties surrounding estimates of how long they will last. After a discussion pupils can mind map their ideas, before the answers revealed and students can self-assess their work. Next, pupils are shown how to calculate orders of magnitude - the skill is demonstrated and then pupils need to have a go at tackling a problem. The next part of the lesson focuses on renewable resources, some examples of renewable energy sources are introduced and then students need to complete a task whereby they read information about different renewable fuel sources and have to sum up the advantages and disadvantages for each. Students can complete a table of their ideas in their books, this task can be self-assessed using the mark scheme. Finally, pupils complete an exam-style question on this topic and self-assess their work. The plenary task requires pupils to summarise what they have learned in the lesson using one of the sentence starters. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk@gmail.com and any feedback would be appreciated :)
NEW AQA GCSE Chemistry (2016) - Group 7: The Halogens
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Group 7: The Halogens

(1)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the 'Atomic Structure & Periodic Table' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a diagram of the electronic configuration of fluorine, chlorine and bromine and pupils need to think > pair > share their ideas about any trends/patterns they can see as they go down the group. The trend in the electronic configuration and what this means in terms of reactivity is then outline on the next slide, pupils are then asked to answer questions about this. The answers to which will be revealed so pupils can check their answers. To summarise what they have learnt so far pupils can complete a fill-in-the-blank task, then they will watch a video which will identify some of the properties of the different elements found in the halogen group. Once this work has been self-assessed pupils will then be shown what a displacement reaction is and will be given a worked example to demonstrate how it works. Once you feel confident that pupils have understood when a displacement reaction will take place they can complete some word equations to show the products of such reactions. This can then be marked and any misconceptions addressed. The plenary task is a true or false task which you could conduct as a class or ask pupils to complete in their books and then mark. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Filtration, Evaporation & Distillation
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Filtration, Evaporation & Distillation

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.3 unit on ‘Separation Techniques. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to the process of filtration, students are shown a diagram and are provided with an description of a method for filtering a mixture. After this, students are provided with a jumble of statements, they will need to order these statements to correctly describe the method of filtration, this task can then be self-assessed using the answers provided. Students will now watch a video on evaporation, students will need to answer a set of questions whilst watching this video. Once students have completed this task, they can mark their work using the answers provided on the PowerPoint presentation. Following this, students will complete a practical to make copper sulphate crystals. The next part of the lesson is on distillation, students will be shown the apparatus used to carry out distillation and will need to copy and complete a paragraph of information to summarise this process. This task can then be marked using the mark scheme provided. Following this, students will be provided with another set of jumbled statements which they will need to order to correctly describe the method of distillation. The answers to this task are included so students can self-assess their work using the mark scheme provided. The plenary task requires students to summarise what they have learned this lesson in three sentences. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
NEW AQA GCSE Trilogy (2016) Chemistry - Ionic Bonding
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Ionic Bonding

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with a video on ionic bonding, students need to watch the video and answer a set of questions, once complete pupils can self-assess their work. Pupils are then asked to think > pair > share how the group number relates to the charge on the ions formed from that group. Using the PowerPoint presentation you can then demonstrate the link between group number and number of electrons lost/gained by a specific atom, students can use these rules to help work out the charges on ions formed. To assess their knowledge of this, pupils will be asked to copy and complete a table to identify the number of protons, electron, the electronic configuration of an atom and of the ion of that atom, as well as the ion’s charge. Pupils can self or peer assess their work using the answers provided in the PowerPoint presentation. The next part of the lesson is for pupils to consider the ionic bond formed in calcium chloride, students will first need to draw the electronic configuration of a calcium and chlorine atom and then looking at the structure try and work out how an ionic bond might form between them. Once pupils have had a go you can reveal the answers using the diagrams and descriptions provided in the PowerPoint presentation, for those pupils who were unable to work it out it may be best for them to copy down the diagram in their books. Pupils will now be asked to draw diagrams to demonstrate the ionic bonds formed between a set of elements - calcium and oxygen, potassium and chlorine, sodium and oxygen, magnesium and chlorine. Once complete they can assess and correct their work using the answers provided in the PowerPoint presentation. The last activity is an exam-style question which pupils can complete in silence, and at the back of their books if it is a higher ability class. When complete the work can be red-pen assessed using the mark scheme provided. The plenary activity is for pupils to summarise what they have learnt in the lesson in three sentences, using as many of the key words provided as possible. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)