I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier pupils.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to the reasons why a patient might be suffering with kidney damage and introduced to the treatments pupils will be learning about this lesson: dialysis and kidney transplants.
For the next part of the lesson pupils will then need to get into four groups, two groups will read information on the treatment of dialysis and two will read information on kidney transplants. Using this information pupils will answer questions in their book and once a group has finished with one of the treatments, they should swap with another groups and answer questions about the other treatment. This task should take 40 minutes in total, once finished pupils should self-assess their work using the answers provided on the PowerPoint presentation.
The last activity is for pupils to answer an exam-style question on the function of the kidneys and treatment for patients with kidney disease, once completed pupils can mark their work using the mark scheme provided.
The plenary task is a 3-2-1 task, pupils write down 3 facts, 2 key words and 1 question to test peers knowledge of the topic of the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW.
Firstly, pupils will need to complete a ‘True or False’ activity on carbohydrates, they will then be shown how polysaccharides are made from monosaccharides via a condensation reaction, as an example of a natural polymer. Pupils will also be provided with information on the structure of starch and glycogen ad how this relates to the function of these two polymers.
Another example of a natural polymer are polypeptides/proteins which are made up of the monomers - amino acids. Again, pupils will be shown how a condensation reaction occurs to link together many amino acids molecules in a long polypeptide chain.
Pupils will now complete a ‘Quick Check’ task to test their knowledge of what they learned so far this lesson, the answers to the questions will be provided in the PowerPoint for students to assess their own work.
The next part of the lesson will focus on DNA as a natural polymer. Firstly, pupils will need to order the structures given in order of size - DNA, gene, chromosome, nucleus, cell. Next, pupils will watch a video on the structure and function of DNA and will need to answer a set of questions. This work can then be self-assessed using the answers provided in the PowerPoint. A diagram is then shown highlighting some of the key structural features of a double-helix DNA molecule, which pupils need to know and remember.
The final task is a ‘Quick Check’ activity on the structure & function of DNA, students will need to answer the questions in their books and then peer or self-assess their work using the mark scheme provided.
The plenary task is for pupils to write three quiz questions for pupils to test their peers knowledge of the topic learned in the lesson today.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.1 unit on ‘The Periodic Table’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with an introduction to the elements found within Group 0 of the Periodic Table - The Noble Gases. Students will learn about some of the chemical properties of these gases within the introduction.
Next, students will be given data on some of the physical properties of the Noble Gases. Students will be shown their melting points and boiling points and will need to answer some questions based on this data. Once this task has been completed, students will then self-assess their work using the mark scheme provided.
Students will now learn about the uses of different gases of the Group 0 elements, students will each be given a piece of information on a particular gas. Students will now need to share information with each other in order to complete a summary table. This work can the be marked and corrected using the mark scheme that is provided in the PowerPoint.
Students will now complete a ‘copy and correct’ task, students will need to copy the paragraph of information and correct any mistakes. The answers to this task can the be used by students to mark and correct their work.
The students will now complete a ‘Who am I?’ task, students will be given a description of an element which will either be from Group 1, Group 0 or Group 7, students will need to decide which element it is describing. Once this task has been completed, students should then self or peer assess their work using the mark scheme provided.
The plenary lesson requires students to summarise what they have learned in three sentences, using the key words provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a recap on the differences between solids, liquids and gases in terms of the arrangement and movement of particles in each of these states of matter. Pupils complete a card sort activity to assess their knowledge on this topic and they can then self-assess their work using the answers provided.
The next part of the lesson focuses on the transitions between states of matter, pupils are firstly reminding of the definitions of melting point, boiling point and freezing point. They will then watch a video on the the transition between states of matter, they will need to answer a set of questions whilst watching the video. This work can be assessed using the answers provided in the PowerPoint presentation. Using the knowledge from this task pupils can then consider why different substances have different melting/boiling points and why adding impurities to a substance may affect the melting/boiling point of a substance.
The next part of the lesson focuses on energy transfers transfers between states of matter, pupils will firstly label a graph with statements to demonstrate what is happening to a substance as it is heated up over time. Pupils then consider, in depth, what is happening to the particles over this period of time, they can think > pair > share their ideas before the answers are revealed within the PowerPoint presentation using diagrams to illustrate the point. Pupils will then complete a set of questions on energy transfers between states of matter to assess their knowledge on the subject. This work can then be either self or peer assessed using the answers provided.
The last part of the lesson is a task where pupils need to consider the limitations of the particle model of matter, again pupils can discuss in their groups what ideas they have on limitations of the model before some examples are revealed at the end of the presentation.
The plenary task is for pupils to write a twitter message about what they have learnt today, including as many keywords as possible.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a quick recap from the previous lesson on the cause and control of diabetes, pupils will need to copy and complete sentences in their books, which can then be self-assessed. Next pupils are given detailed posters of information on the treatments available to patients with type 1 and type 2 diabetes. Pupils will need to read through these posters in pairs/on a table and answer the questions on the PowerPoint slide. Once finished, pupils can self-assess their work using the answers provided.
Pupils will now focus on the advantages and disadvantages of different medical cures for type 1 diabetes. In pairs they will be given a set of cards informing them of new advances in treatments available to patients with type 1 diabetes and they will need to create a summary table to weight up the pro’s and con’s of each treatment.
The final activity is an exam question on what pupils have learnt so far that lesson, this is accompanied with a mark scheme which pupils can use to mark their work.
The plenary activity is an anagram challenge, pupils need to unscramble the letters to spell a key word from the lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C1.1 Module on ‘Particles & Their Behaviour’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson begins with an introduction to particles, describing the differences between materials which are made up of just one type of particle - a substance - and those that are made up of different particles - a mixture. Students are also introduced to the idea of properties of a substance as a description of the way in which a substance looks like and behaves.
Students will then carry out a ‘Copy and Complete’ task where they will fill in the blanks to outline what they have learned about particles so far this lesson. This task can be self-assessed using the mark scheme provided on the PowerPoint presentation.
Students are now introduced to the three states of matter - solid, liquid and gas. Students will firstly watch a video, using which they will need answer a set of questions about the arrangement of particles in a solid, liquid and a gas. The answers to this task are included in the PowerPoint for students to self-assess their work once it is complete.
Next, students will draw a summary table into their books and will be given a card sort, students will need to sort the statements into the correct part of their table to describe the properties of solids/liquids/gases. The mark scheme for this task is included on the PowerPoint presentation, it can be used for pupils to self-assess their work.
Lastly, students are given another set of statements describing the properties of solids/liquids/gases. Students need to draw a Venn diagram into their books and will need to sort the statements into the Venn diagram, this task can be marked and corrected once complete.
The plenary task requires students to unscramble a set of anagrams, each anagram is a key word learned from this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW and for higher tier students.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a recap of normal body temperature and what happens if the temperature falls above or below this temperature. Pupils will also be introduced to the role of the thermoregulatory centre and thermoregulatory receptors in monitoring body temperature.
Pupils are then asked to discuss and produce a list of mechanisms that helps the body to cool down on a hot day. This leads onto describe the role of sweating and vasodilation in cooling the body down. Pupils are then asked to consider what they think might happen if the body becomes too cold and again produce a list of mechanisms which might help warm it up. Using the PowerPoint slides the mechanisms of shivering and vasoconstriction will be demonstrated to pupils. Using this information pupils will need to copy and complete a flow diagram to demonstrate the role of thermoregulatory centre in controlling body temperature, this can be self-assessed once it has been completed.
Pupils will now copy and label a diagram of the skin to show the position of sweat glands, hair, hair muscle and blood vessels, this can be marked once it has been completed.
The next activity is for pupils to sort statements into two columns - one describing what happens when the body is too hot and one for when the body is too cold. Once completed the mark scheme can be used by pupils to self or peer-assess their work.
The final activity is a 6-mark exam-style question on this topic, pupils should try and complete this in silence and at the back of their books to really test their knowledge of this topic. Once complete the mark scheme can be used for pupils to mark their own work.
The plenary task is for pupils to pick a summary question of their choice from the two provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.1 unit on ‘The Periodic Table’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson starts off with an introduction to the Periodic Table and Dmitri Mendeleev, this then follows into a video which students will watch and will also answer questions on a worksheet. Once this task has been completed, students can self-assess their answers using the mark scheme provided.
Next, students are introduced to the idea of groups and periods of the Periodic Table. Students can take notes on the definition of these two terms, before leading into a task whereby students will be given some data on the melting points and boiling points of Group 1 metals. Using this data students will be asked to answer a set of questions, this work can then be marked and assessed using the mark scheme provided.
The next task focuses on periods of the Periodic Table, students will need to use the data provided in the PowerPoint presentation to answer a set of questions on the pattern of melting points across Period 2 and Period 3. This task can then be self-assessed using the mark scheme provided.
The last task is a copy and correct task, students will need to copy the paragraph out into their books, correcting any mistakes. This work can the be marked and assessed using the mark scheme provided in the PowerPoint.
The plenary task requires students to write down three quiz questions to test their peers knowledge of what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson which meets specification points within the OCR Gateway Science - B1 -Cell-Level Systems SoW.
This lesson starts with a description, and diagram, of how DNA is copied via the process of transcription. Students will watch a short animation on the PowerPoint which further outlines this process, they will then need to complete a fill-in-the-blank task. This can be self-assessed using the mark scheme provided.
Next, children will look at the structure of DNA and mRNA and compare the two, they will complete a table which outlines the similarities and differences between these two molecules. This can be self-assessed using the answers provided.
The latter part of the lesson is on translation, children will be given a description and shown a short animation of the process of translation. After this, a video will be shown and students will need to answer a set of questions whilst watching. The answers to this task are included in the PowerPoint, and children will need to self-assess their work once it is complete.
The final activity is an exam-style question on DNA.
All resources are included, please review with any feedback :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter discussion to explain the effect temperature has on enzymes. Students should explain why they think many enzymes cannot function at over 60 degrees celcius.
Then, go on to teach students the inhibitor classifications and their functions through three slides containing definitions and diagrams. Students then have an opportunity to identify competitive and non-competitive inhibitors as a class through two easy diagrams.
Students will then be asked to complete “worksheet 1” independently, in order to practise diagramming competitive and non-competitive inhibition with complete definitions, on their own. The answers are displayed on the following slide so students may self-assess, or you may choose to have them assess each-others’ work in partners. You can find worksheet 1 at the end of the PowerPoint on slide 17.
The following slide explains substrate concentration and reaction rate with competitive, and then non-competitive inhibition. Students should use worksheet 2 (slide 18 of the PowerPoint) to take notes and answer the questions independently.
When worksheet 2 is complete, define potassium cyanide and encourage a discussion between pairs about the danger of cyanide.
Students should then complete the exam style questions from slide 19 and self-assess. If necessary, leave time for questions and discussion.
The lesson concludes with a plenary task which asks students to write a tweet demonstrating what they’ve learned, their tweet should be no more than 140 characters and include #keywords.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a resource for the NEW AQA GCSE Biology specification, covering specification points within the ‘Infection and Response’ module.
For more resources aimed at the NEW AQA GCSE specifications please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This resource contains the PowerPoint for the lesson, the resources are found at the end of the PowerPoint.
The lesson begins with considering what is important in a new medicine and what scientists need to think about when developing new medicines. This goes on to define some of the key factors such as safety, efficacy & stability.
Next, is an introduction of how a vaccination works, pupils will watch a video and answer questions on a worksheet. Pupils will self-asses their work.
Pupils will then complete a cartoon strip of how a vaccination works, trying to use as many key words as possible. Pupils should self-assess their work against correct use of key terminology.
The plenary will test the pupils knowledge of their ability to describe how a vaccine works. They will need to turn to the back of their books and describe how a vaccine works, using as many of the key terms as possible.
Resources are all found at the end of the PowerPoint.
Enjoy :)
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 B3 ‘Reproduction’ Unit.
Lessons include:
Adolescence
Reproductive Systems
Fertilisation & Implantation
Development of a Fetus
The Menstrual Cycle
Flowers & Pollination
Fertilisation & Germination
Seed Dispersal
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Motion & Pressure’.
More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated.
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the 'Atomic Structure & Periodic Table' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a reminder of what a mixture is and a list of key words related to this topics, pupils are asked to think > pair > share ideas about the definition of these key words. After a class discussion pupils are asked to link these terms, with examples, to the correct definition. Once finished they can self-assess this work.
Pupils will then watch a video about different separation techniques and will be required to answer questions whilst watching, after this work is self-assess pupils will explore these methods further by completing a table of information using posters around the room.
The final activity is a practical to show how chromatography works, pupils will complete this practical (should only take 10-15 minutes) and then will be introduced to Rf values, they can use this calculation to work out the Rf values of the dyes they have separated during the practical.
The plenary task is for pupils to summarise what they have learnt during the lesson by using as many key words from the key word list as possible.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Forces in Action’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a ‘Think > Pair > Share’ task, students are asked to consider the question ‘What is a force?’. Students will be given a few minutes to discuss in pairs, before feeding back to the class before the answer is revealed.
Forces can be described as ‘contact’ or ‘non-contact’, students are asked to discuss what they think the differences between these types of forces are. After a short class discussion, the definition for each is revealed to students, they can make a note of this in their books. Next, students will be provided with a list (and diagrams) of different forces , they will need to sort into either contact or non-contact forces. This task can be self-assessed once it is complete.
Next, students are introduced to Newton’s Third Law of Motion, when two objects interact with each other, they exert equal and opposite forces on each other. Students will then watch a video to demonstrate the principles of this law, students will answer a set of questions whilst doing so. Once complete, students can self-assess their work using the mark scheme provided.
Next, students are provided with a further example of this law which they can take notes on their books. After this, students will complete a ‘quick check’ task to assess their knowledge of what they have learned so far this lesson. This work can then be marked and corrected using the answers provided on the PowerPoint presentation.
Lastly, students complete a ‘fill-in-the-blank’ task to summarise what they have learned this lesson, this can be self-assessed using the mark scheme provided.
The plenary task requires students to write down three facts, three key words and one question to test their peers on what they have learned so far this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of the lesson asks students to think > pair > share some of their answers to questions about pollution - where does it come from? How may we monitor it? Once pupils have gathered together their ideas as groups, a class discussion can highlight some of the important ideas & the next slide details the answers.
The next task focuses on sulfur dioxide pollution and it’s contribution to the formation of acid rain. Pupils will be given some information in pairs about this pollutant and will be required to answer questions about this information in their books. Once completed pupils are able to self-assess their work using the answers provided in the PowerPoint.
The next part of the lesson is on catalytic converters, pupils will be given some information about a catalytic converter and a human bingo grid. Pupils will wander around the room and others will ask them questions in order to fill in their bing grid. Once a student has completed their grid they can shout bingo! When everyone has had enough time to complete the grid they will need to self-assess their work using the answers provided.
The next task is for pupils to consider alternative fuels as a way of reducing air pollution. Pupils are given sets of information about three alternative fuels, they will then need to fill in a table of the advantages and disadvantages of these fuels. Once completed pupils can check their work against the answers provided, marking and correcting their answers.
A mid-lesson progress check requires pupils to identify whether a set of statements are true or false, this can be completed with a mini whiteboard or in their books.
The next part of the lesson focuses on how scientists can monitor pollution, pupils are given a set of results from particle collector pads which have been left in certain locations around the UK. Pupils need to record their results in a table, draw a graph to represent the results and write a conclusion about their results.
The plenary task is for pupils to complete a fill-in-the-blanks task on air pollution, pupils can also self-assess their work using the answers provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with pupils being given a card sort of organisms, they will need to look at the pictures and try and decide how they would sort these organisms into groups, in other words how would they classify the organisms.
Pupils will then be introduced to Linnaeus’ classification system and how this now influences the way we classify organisms, as well as explaining how modern technology can help us to group organisms.
Pupils will then watch a video on classification, they will asked to think about, and write notes, on why classification is such an important process that scientists use.
Now pupils are being introduced to the order of the classification system, pupils will be shown the order and then pupils will need to come up with their own mnemonic to help them remember this order.
Pupils will then be introduced to the binomial naming system and the importance of this system, which they should be able to recount.
The next activity involves pupils walking around the room, reading posters and they will need to use this information to complete a worksheet answering questions about the different kingdoms of the classification system. Once this is complete pupils can self or peer assess their work using the answers provided within the PowerPoint presentation
Pupils will then complete an exam-style question on the topic of classification. This can then be self-assessed using the mark scheme provided.
The plenary is for pupils to complete an exit card to demonstrate what they have learnt during the lesson, this can be handed in at the end of the lesson to the teacher to check student understanding.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils are firstly given some information, in pairs, on how temperature can affect the rate of decay. They are asked to read through the information and complete a set of questions. Once this task is complete pupils can self-assess their work using the answers provided.
The next task is for pupils to think > pair > share ideas about how you could stop or delay the decay process with food. Some images are provided on the PowerPoint slide as a prompt to help students, they can also use the information from the first task to help them come up with ideas. Once pupils have been given time to write their ideas down you can discuss as a group and then reveal the 5 main ways in which foods can be preserved.
Pupils will then be given a set of information about each of these preservation methods, they need to use this information plus the information from the first task they completed to explain how each of the methods helps to prevent or delay the decay process. Pupils can then self or peer assess their work once complete.
For the next task pupils are asked to use information posters places around the room or on their tables to answer a set of questions about decay & recycling. Once pupils have completed these questions they will need to assess their work using the answers provided.
The very last task is an exam question that pupils can either complete in silence at the back of their books - higher ability - or perhaps use the work they have completed this lesson if they are lower ability.
The plenary task is for students to write three sentences to summarise what they have learnt this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, for the higher tier, biology only specification.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson with a think > share > pair task on the definition of a species, pupils ca try and come up with their own definitions before you reveal the true answer.
The next part of the lesson focuses on Alfred Russel Wallace and his work on the theory of speciation. Pupils will need to watch the video on Wallace and using the video come up with a timeline or notes on the life events and work produced by Wallace in his lifetime. Once this task is complete pupils can compare what they have written against success criteria provided, pupils can mark, correct and add any important notes using the criteria.
The next part of the lesson focuses on the process of speciation, firstly pupils will need to watch a video about organisms which are separated and the develop certain characteristics depending on the environment they are living in. The second video provides a more detailed description of how speciation occurs, pupils will need to answer questions whilst watching this video. Pupils can mark their work using the mark scheme provided once they have completed this task.
The next task is a card/statement sort, pupils will need to place the statements provided (can cut out as a card sort) into the correct order to describe the process of speciation, once pupils have completed this task they can mark their work.
The final activity is an exam-style question on speciation, pupils will need to complete the exam question in their books (at the back without notes as an extra challenge). Once pupils have completed the exam question they can self or peer assess their work using the mark scheme provided.
The plenary task is for pupils to write a twitter message by Alfred Wallace about his work on the theory of speciation.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of the lesson focuses on the problems of metal extraction, particularly to the environment. Students will firstly brainstorm their ideas of how metal extraction can cause problems, then some examples are revealed using the PowerPoint presentation and the need for recycling is also explained.
Students will then need to complete a progress check, a set of questions to assess their knowledge of what they have learned this lesson. The answers to which are included in the PowerPoint presentations so students can self-assess or peer-assess work.
Pupils will now focus on the extraction and recycling of three metals: aluminium, copper and iron. They will firstly be given some information sheets on these three metals and using these they will need to answer a 6-mark exam question which requires pupils to give a use for each metal and outline reasons why they should be recycled by listing both economic and environmental reasons. This task can then be peer or self-assessed using the comprehensive mark scheme provided.
Pupils will now watch a video which outlines limits to recycling, pupils will need to answer a set of questions whilst watching the video. This work can then be self-assessed using the mark scheme provided.
The last task is a word search, pupils need to find a list of key words in the word search and for each word they find they need to write a sentence which links that word to the extraction of metal from it’s ore.
The plenary activity is for pupil to spend five minutes thinking about what they have learned in the lesson - what they have understood and what they would like to spend more time on.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk@gmail.com and any feedback would be appreciated :)