Hero image

Teach Science & Beyond

Average Rating4.78
(based on 27 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

130k+Views

84k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
AS Chemistry: Combustion of Alkanes (OCR)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Combustion of Alkanes (OCR)

(0)
A structured lesson including starter activity, AfL work tasks and lesson slides on the combustion of alkanes. Suitable for the OCR specification. By the end of this lesson KS5 students should be able to: To understand why alkanes are good fuels To recall the equations (both word and symbol) for complete combustion of alkanes of alkanes To recall the equations (both word and symbol) for incomplete complete combustion of alkanes of alkanes Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Ionisation Energy (Part 1)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Ionisation Energy (Part 1)

(0)
A structured KS5 lesson (Part 1 of 2) including starter activity and practice questions with answers on ionisation energy By the end of this lesson KS5 students should be able to: To define the term ‘first ionisation energy’ and successive ionisation energies To describe the factors affecting ionisation energy To explain the trend in successive ionisation energies of an element Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Atomic Orbitals
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Atomic Orbitals

(0)
A structured KS5 lesson including starter activity and AfL work tasks Electrons and Atomic Orbitals By the end of this lesson KS5 students should be able to: To know that atomic orbitals are a region around the nucleus that occupy electrons To illustrate the shape of s, p and d orbitals To describe the number of orbitals that make up the s, p and d sub shells and the number of electrons that fill the sub shells To deduce the electronic configuration of atoms and ions in the s and p-block The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Important Note For Teachers: A lesson on electronic configuration of d-block elements is available as a separate lesson in my shop Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Mass Spectroscopy
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Mass Spectroscopy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectroscopy. Suitable for OCR AS Chemistry By the end of this lesson KS5 students should be able to: To determine the relative atomic masses and relative abundances of the isotope using mass spectroscopy To calculate the relative atomic mass of an element from the relative abundances of its isotope Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Kinetics: The Arrhenius Equation (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Kinetics: The Arrhenius Equation (A Level Chemistry)

(0)
A structured KS5 lesson including starter activity and modelled practice questions on The Effect of Temperature on the Rate Constant (The Arrhenius Equation). By the end of this lesson KS5 students should be able to: Explain qualitatively the effect of temperature change on a rate constant,k, and hence the rate of a reaction To Know the exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, k = Ae–Ea/RT Determine Ea and A graphically using InK = -Ea/RT+ InA derived from the Arrhenius equation Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Ionic Bonding
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Ionic Bonding

(0)
A structured KS5 lesson including starter activity and modelled questions on Ionic Bonding By the end of this lesson KS5 students should be able to: To know ionic bonding as electrostatic attraction between positive and negative ions, and the construction of ‘dot-and-cross’ diagrams To explain solid structures of giant ionic lattices are a result of oppositely charged ions strongly attracted to each other in all directions To link the structure and bonding of ionic compounds on their physical properties including melting and boiling points, solubility and electrical conductivity in solid, liquid and aqueous states Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Covalent and Dative Covalent Bonding
TeachScienceBeyondTeachScienceBeyond

Covalent and Dative Covalent Bonding

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Covalent and Dative Covalent Bonding By the end of this lesson KS5 students should be able: To know covalent bonding as electrostatic attraction between a shared pair of electrons and the nucleus To construct dot and cross diagrams of molecules and ions to describe single and multiple covalent bonding To apply the term average bond enthalpy as a measurement of covalent bond strength To know what a dative covalent bond is To construct dot and cross diagrams of molecules and ions to describe dative covalent bonding Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Kinetics Revision (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Kinetics Revision (A Level Chemistry)

(0)
This is an engaging KS5 revision lesson the Kinetics topic in A Level Chemistry (Year 13) Students will be able to complete three challenging question rounds on kinetics covering: Measuring Reaction Rates Orders of reactants Concentration-time graphs Rate-concentration graphs Clock Reactions Initial rates Arrhenius Equation Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Ionisation Energy (Part 2)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Ionisation Energy (Part 2)

(0)
A structured KS5 lesson (Part 2 of 2) including starter activity and practice questions with answers on ionisation energy By the end of this lesson KS5 students should be able to: To explain the trend in first ionisation energies down a group To explain the trend in first ionisation energies across period 2 To explain the trend in first ionisation energies across period 3 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Redox Titration Revision
TeachScienceBeyondTeachScienceBeyond

Redox Titration Revision

(0)
Well structured Year 13 revision lesson on Redox Titrations. This lesson contains a starter activity on an exam question on redox equations and qualitative analysis followed by 4 exam style questions on unstructured redox titration questions. Model answers are included for all questions. By the end of the lesson students should be able to: To calculate unstructured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives To calculate unstructured titration questions based on experimental results of redox titrations involving Fe2+ /Cr2O72- and its derivatives Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Gibbs Free Energy (Part 2)
TeachScienceBeyondTeachScienceBeyond

Gibbs Free Energy (Part 2)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Gibbs Free Energy (Part 2) By the end of this lesson KS5 students should be able: To state and use the relationship ΔG = ΔH-TΔS To draw a link between ΔG and feasibility To explain the limitations of predictions made by ΔG about feasibility, in terms of kinetics. The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Practical Skills in Organic Synthesis (Yr13)
TeachScienceBeyondTeachScienceBeyond

Practical Skills in Organic Synthesis (Yr13)

(0)
A structured KS5 lesson (Yr13) including starter activity, discussion questions, videos and main work task all with answers included on Practical Skills for Organic Synthesis II. Suitable for the OCR specification. By the end of this lesson KS5 students should be able to: To describe the techniques and procedures used for the purification of organic solids including: filtration under reduced pressure recrystallisation measurement of melting points Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Practical Skills for Organic Synthesis (Yr12)
TeachScienceBeyondTeachScienceBeyond

Practical Skills for Organic Synthesis (Yr12)

(0)
A structured KS5 lesson (Yr12) including starter activity, discussion questions, videos and main work task all with answers included on Practical Skills for Organic Synthesis. Suitable for the OCR specification. By the end of this lesson KS5 students should be able to: To demonstrate knowledge, understanding and application of the use of Quickfit apparatus for distillation and heating under reflux To understand the techniques for preparation and purification of an organic liquid including: use of a separating funnel to remove an organic layer from an aqueous layer drying with an anhydrous salt redistillation Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
PAG 12.1 Investigating Iron Tablets
TeachScienceBeyondTeachScienceBeyond

PAG 12.1 Investigating Iron Tablets

(0)
OCR Required Practical on PAG 12.1: Investigating Iron Tablets. This resource includes reasearch and planning guidance, experiment guidance and worked examples of the practical calculations. This resource also includes an amended student practical sheet to help students complete their observations and analysis of results. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Synthetic Routes in Organic Synthesis (Yr12)
TeachScienceBeyondTeachScienceBeyond

Synthetic Routes in Organic Synthesis (Yr12)

(0)
A structured KS5 lesson (Yr12) including starter activity, discussion questions and main work tasks all with answers included on Synthetic Routes in Organic Synthesis. By the end of this lesson KS5 students should be able to: LO1: To identify individual functional groups for an organic molecule containing several functional groups LO2: To predict the properties and reactions of an organic molecule containing several functional groups LO3: To create two-stage synthetic routes for preparing organic compounds **A free summary of the synthetic routes for year 12 (AS Chemistry) can be found here: ** https://www.tes.com/teaching-resource/resource-12367174 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Ions and the Periodic Table
TeachScienceBeyondTeachScienceBeyond

Ions and the Periodic Table

(0)
A structured KS5 lesson including starter activity and AfL work tasks Ions & The Periodic Table. All tasks have answers included. By the end of this lesson KS5 students should be able to: To predict the ionic charge of ions based on the position of the element in the periodic table To recall the names of common atomic and molecular ions To be able write the formula of ionic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Acids, Bases and Neutralisation
TeachScienceBeyondTeachScienceBeyond

Acids, Bases and Neutralisation

(0)
A complete KS5 lesson including starter activity, main work task and answers on acids, bases and neutralisation By the end of this lesson KS5 students should be able to: LO1. To know the formula of common acids and alkalis LO2. To explain the action of an acid and alkali in aqueous solution and the action of a strong and weak acid in terms of relative dissociations LO3. To describe neutralisation as a reaction of: (i)  H+ and OH– to form H2O (ii)  acids with bases, including carbonates, metal oxides and alkalis (water-soluble bases), to form salts, including full equations All tasks have worked out answers which will allow students to self assess their work in the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Practical on Precipitation and Ligand Substitution Reactions
TeachScienceBeyondTeachScienceBeyond

Practical on Precipitation and Ligand Substitution Reactions

(0)
A practical lesson on the theory on precipitation and ligand substitution reactions of transition metals. By the end of the practical lesson students should be able to: LO1: To make observations of the reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ in aqueous sodium hydroxide and ammonia LO2: To construct ionic equations for the redox reactions that take place ** This lesson should be completed after students have made flashcard/notes on the theory lesson so that they are able to answer the practical questions (see ‘Precipitation and Ligand Substitution Reactions’ in my TES Shop for this lesson) ** Students are encouraged to continue to use their flashcards following this lesson to improve their recall on this topic Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Acid-Base Titration Procedures
TeachScienceBeyondTeachScienceBeyond

Acid-Base Titration Procedures

(0)
A complete KS5 lesson including starter activity, main work task and answers on acid-base titration procedures By the end of this lesson KS5 students should be able to: Outline the techniques and procedures used when preparing a standard solution of required concentration Outline the techniques and procedures used when carrying out acid–base titrations Determine the uncertainty of measurements made during a titration practical All tasks have worked out answers which will allow students to self assess their work in the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Moles & Volumes (Solutions & Gas Volumes)
TeachScienceBeyondTeachScienceBeyond

Moles & Volumes (Solutions & Gas Volumes)

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on moles and volumes (solutions and gas volumes) By the end of the lesson students should be able to: To calculate the amount of substance in mol, involving solution volume and concentration To understand the terms dilute, concentrated and molar To explain and use the term molar gas volume To calculate the amount of substance in mol, involving gas volume Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above