Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
5 Full Lesson Bundle on Analysis from the OCR A Level Chemistry specification. Please review the learning objectives below.
Lesson 1: Chromatography
To interpret one-way TLC chromatograms in terms of Rf values
To interpret gas chromatograms in terms of:
(i) retention times
(ii) the amounts and proportions of the components in a mixture
To understand the creation and use of external calibration curves to confirm concentrations of components.
Lesson 2: Qualitative Analysis of Organic Functional Groups
To recall qualitative analysis of organic functional groups on a test-tube scale
To design qualitative analysis tests to distinguish between two or more organic compounds
Lesson 3: Carbon-13 NMR Spectroscopy
To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about:
The number of carbon environments in the molecule
The different types of carbon environment present from chemical shift values
Possible structures for the molecule
Lesson 4: Proton NMR Spectroscopy (Part 1)
To analyse proton NMR spectra of an organic molecule to make predictions about:
The number of proton environments in the molecule
The different types of proton environment present from chemical shift values
Lesson 5: Proton NMR Spectroscopy (Part 2) (includes combined techniques)
To analyse proton NMR spectra of an organic molecule to make predictions about:
The different types of proton environment present from chemical shift values
The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required
The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule
Possible structures for the molecule
Note: 2 Exam Questions on Combined Techniques are also included in lesson 5!
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Well structured KS5 Lesson on Benzene and its structure. The lesson contains starter activities, discussion questions and mini AfL quizzes and practice questions, all with answers included
By the end of the lesson students should:
To describe the Kekulé model of benzene
To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system
To compare the Kekulé model of benzene and the delocalised model of benzene
4.To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Carboxylic Acids and Esters. Suitable for AQA A level Chemistry
By the end of this lesson KS5 students should be able to:
To know how to draw and name carboxylic acids (Y12 recap)
To construct equations for the reaction of carboxylic acids with carbonates based on their weak acidic properties
To know how to name and draw esters
To know how esters are formed from the reaction of carboxylic acids with alcohols
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
8 Full Lesson Bundle which covers the redox and electrode potential section of the OCR Energy Chapter:
Lesson 1 & 2: Redox Reactions
Lesson 3& 4: Redox Titrations
Lesson 5&6: Standard Electrode & Cell Potentials
Lesson 7: Limitations of Cell Potentials
Lesson 8: Storage & Fuel Cells
Learning Objectives:
Lesson 1:
LO1: To identify the oxidation numbers of elements in ions and compounds
LO2: To construct half-equations from redox equations
LO3: To explain and use the terms oxidising agent and reducing agent
Lesson 2:
LO1: To understand that the overall increase in oxidation number will equal the overall decrease in oxidation number
LO2: To construct balanced half equations and overall redox equations from reactions in acidic conditions
LO3: To construct balanced half equations and overall redox equations from reactions in alkaline conditions (stretch & challenge)
Lesson 3:
LO1: To understand what a redox titration is.
LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4-
LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives
Lesson 4:
LO1: To describe the practical techniques and procedures used to carry out redox titrations for I2/S2O32-
LO2: To calculate structured titration questions based on experimental results of redox titrations involving I2/S2O32- and non familiar redox systems
LO3: To calculate non-structured titration questions based on experimental results of I2/S2O32-
Lesson 5:
LO1: To describe techniques and procedures used for the measurement of :
i) Cell potentials of metals or non-metals in contact with their ions in aqueous solution
ii) Ions of the same element in different oxidation states in contact with a Pt electrode
Lesson 6:
LO1: To use the term standard electrode potential E⦵ including its measurement using a hydrogen electrode
LO2: To calculate a standard cell potential by combining two standard electrode potentials
LO3: To predict the feasibility of electrode potentials to modern storage cells
Lesson 7:
LO1. To understand the limitations of predicting the feasibility of a reaction using cell potentials due to kinetics and non-standard conditions
LO2. To explain why electrochemical cells may not work based on the limitations of using cell potentials
Lesson 8:
LO1: To understand the application of the principles of electrode potentials to modern storage cells
LO2: To explain that a fuel cell uses the energy from a reaction of a fuel with oxygen to produce a voltage
LO3: To derive the reactions that take place at each electrode in a hydrogen fuel cell
The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Student friendly personalised learning checklist for AQA A level Chemistry (7405)
This resource includes key specification statements for papers 1-3
This resource has been split into three separate Excel documents for:
3.1 physical chemistry
3.2 inorganic chemistry
3.3 organic chemistry
The exam paper number linked to each topic can be found in the left hand corner of each checklist to aid student exam revision.
Well structured KS5 Lesson on The Reactions of Benzene. The lesson contains starter activities, discussion questions and mini AfL questions and practice questions, all with answers included
By the end of the lesson students should:
To understand the electrophilic substitution of aromatic compounds with:
(i) concentrated nitric acid in the presence of concentrated sulfuric acid
(ii) a halogen in the presence of a halogen carrier
(iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring
To construct the mechanism of electrophilic substitution in arenes
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
5 Full Lessons on Energetics in AS Level Chemistry. See below for the lesson objectives
Lesson 1: Enthalpy and Reactions
LO1: To explain that some chemical reactions are accompanied by enthalpy changes that are exothermic or endothermic
LO2: To construct enthalpy profile diagrams to show the difference in the enthalpy of reactants compared with products
LO3: To qualitatively explain the term activation energy, including use of enthalpy profile diagrams
**Lesson 2: Enthalpy Changes **
LO1: To know what standard conditions are
LO2:To understand the terms enthalpy change of combustion, neutralisation and formation
LO3:To construct balanced symbol equations based on the terms enthalpy change of combustion, neutralisation and formation.
Lesson 3: Bond Enthalpies
LO1: To explain the term average bond enthalpy
LO2:To explain exothermic and endothermic reactions in terms of enthalpy changes associated with the breaking and making of chemical bonds
LO3:To apply average bond enthalpies to calculate enthalpy changes and related quantities
**Lesson 4: Calorimetry **
LO1:To determine enthalpy changes directly from appropriate experimental results, including use of the relationship q=mcΔT
LO2:To know the techniques and procedures used to determine enthalpy changes directly using a coffee cup calorimeter
LO3:To know the techniques and procedures used to determine enthalpy changes indirectly using a copper calorimeter
**Lesson 5: Hess’ Law & Enthalpy Cycles **
LO1: To state Hess’ Law
LO2: To calculate the enthalpy change of a reaction from enthalpy changes of combustion using Hess’ Law
LO3:To calculate the enthalpy change of a reaction from enthalpy changes of formation using Hess’ Law
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and plenary task all with answers on pH indicators & Titration Curves
By the end of this lesson KS5 students should be able to:
LO1. To explain indicator colour changes in terms of equilibrium shift between the HA and A- forms of the indicator
LO2. To explain the choice of suitable indicators given the pH range of the indicator
LO3. To describe an experiment for creating a titration curve
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 Full Lesson Bundle which covers the Kinetics chapter from the OCR AS Level Chemistry Specification (may also suitable for the AQA and Edexcel Spec- see Learning Objectives below to confirm)
Lesson 1: Collision Theory & Rates of Reaction
**1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
**2. To calculate the rate of reaction using the gradients of a concentration-time graph
**3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Lesson 2: Catalysts
**1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
**2. To calculate the rate of reaction using the gradients of a concentration-time graph
**3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Lesson 3: The Boltzmann Distribution
**1. To draw a labelled diagram of the Boltzmann distribution
**2. To explain qualitatively the Boltzmann distribution and its relationship with activation energy
**3. To explain how temperature changes and catalytic behaviour effect the proportion of molecules exceeding the activation energy and hence the reaction rate using Boltzmann distributions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Redox Reactions. All tasks have worked out answers, which will allow students to self assess their work during the lesson
By the end of this lesson KS5 students should be able to:
LO1. To interpret the redox reactions and accompanying colour changes for:
(i) interconversions between Fe2+ and Fe3+
(ii) interconversions between Cr3+ and Cr2O72−
(iii) reduction of Cu2+ to Cu+
(iv) disproportionation of Cu+ to Cu2+ and Cu
LO2. To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions
NOTE: 23 printable flashcards of all the transition element reactions: precipitation, ligand substitution and redox reactions is available here
https://www.tes.com/teaching-resource/resource-12637622
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Amino Acids And Their Reactions
By the end of this lesson KS5 students should be able to:
To know the general formula for an α-amino acid as RCH(NH2)COOH
To understand the following reactions of amino acids:
(i) reaction of the carboxylic acid group with alkalis and in the formation of esters
(ii) reaction of the amine group with acids
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks on the reactivity series and metal extraction. Suitable for AQA GCSE Chemistry and Combined Science (higher and foundation)
By the end of this lesson KS4 students should be able to:
Deduce an order of reactivity of metals based on experimental results
Explain reduction and oxidation by loss or gain of oxygen
Explain how the reactivity is related to the tendency of the metal to form its positive ion
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on IR Spectroscopy. Suitable for OCR AS Chemistry.
By the end of the lesson, students should be able to:
To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses
2)To understand how infrared spectroscopy works
3)To understand the application of infrared spectroscopy
To interpret IR spectra
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on Addition Polymerisation of Alkenes. This lesson follows the OCR specification.
**By the end of the lessons students should be able:
**1. To know the repeat unit of an addition polymer deduced from a polymer
**2. To identify the monomer that would produce a given section of an addition polymer
**3. To construct repeating units based on provided monomers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Condensation Polymers
By the end of this lesson KS5 students should be able to:
1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides
2. To predict from addition and condensation polymerisation:
i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation
3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Born Haber Cycles
By the end of this lesson KS5 students should be able to:
1.To construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values
2.To calculate the value for lattice enthalpy from Born Haber Cycle diagrams
3.To calculate other enthalpy change values from Born Haber Cycle diagrams
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and lesson slides on halogenoalkanes and their chemical reactions
By the end of this lesson KS5 students should be able to:
To Identify haloalkanes as primary, secondary or tertiary
To understand why haloalkanes are more reactive than alkanes
To describe what a nucleophile is and to state some examples
To outline the mechanism of nucleophilic substitution and elimination reactions involving haloalkanes
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Bronsted Lowry Acids and Bases
By the end of this lesson KS5 students should be able to:
To describe the difference between a BrØnsted Lowry acid and base
To identify conjugate acid-base pairs
To explain the difference between monobasic, dibasic and tribasic acids
To understand the role of H+ in the reactions of acids with metals and bases (including carbonates, metal oxides and alkalis), using ionic equations
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Gibbs Free Energy (Part 2)
By the end of this lesson KS5 students should be able:
To state and use the relationship ΔG = ΔH-TΔS
To draw a link between ΔG and feasibility
To explain the limitations of predictions made by ΔG about feasibility, in terms of kinetics.
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Gibbs Free Energy (Part 1)
By the end of this lesson KS5 students should be able:
To explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system
To recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T
To calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above