Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on The Boltzmann Distribution. Suitable for OCR Specification (AS Chemistry)
By the end of this lesson KS5 students should be able to:
**1. To draw a labelled diagram of the Boltzmann distribution
**2. To explain qualitatively the Boltzmann distribution and its relationship with activation energy
**3. To explain how temperature changes and catalytic behaviour effect the proportion of molecules exceeding the activation energy and hence the reaction rate using Boltzmann distributions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on Catalysts. Suitable for OCR Specification (AS Chemistry)
By the end of this lesson KS5 students should be able to:
**1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
**2. To calculate the rate of reaction using the gradients of a concentration-time graph
**3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on Collision Theory and Rates of Reaction. Suitable for OCR Specification (AS Chemistry)
By the end of this lesson KS5 students should be able to:
To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
To calculate the rate of reaction using the gradients of a concentration-time graph
To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
4 well structured chemistry lessons covering topics in Alkenes (Year 12) suitable for the OCR specification
NOTE: If you are also looking for a lesson on stereoisomerism in alkenes , this can also be found in my shop under the title ‘Isomers’
Lesson 1: The Properties of Alkenes
To know the general formula of alkenes
To explain the shape and bond angle around each carbon atom of a C=C bond
To describe how π and σ bonds are formed in alkenes
Lesson 2: Addition Reactions of Alkenes
To know what an electrophile is
To describe what an electrophilic addition reaction is
To outline the mechanism for electrophilic addition
Lesson 3: Addition Polymerisation
To know the repeat unit of an addition polymer deduced from a polymer
To identify the monomer that would produce a given section of an addition polymer
To construct repeating units based on provided monomers
Lesson 4: Dealing with Polymer Waste
To understand the benefits for sustainability of processing waste polymers by:
i) Combustion for energy production
ii) Use as an organic feedstock for the production of plastics and other organic chemicals
iii) Removal of toxic waste products such as HCl
To understand the benefits to the environment of development of biodegradable and photodegradable polymers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, research task and plenary task on Dealing With Polymer Waste. Please see the lesson guidance for more information. This lesson follows the OCR specification.
By the end of the lesson students should be able:
LO1: To understand the benefits for sustainability of processing waste polymers by:
Combustion for energy production
Use as an organic feedstock for the production of plastics and other organic chemicals
Removal of toxic waste products such as HCl
LO2: The benefits to the environment of development of biodegradable and photodegradable polymers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on Addition Polymerisation of Alkenes. This lesson follows the OCR specification.
**By the end of the lessons students should be able:
**1. To know the repeat unit of an addition polymer deduced from a polymer
**2. To identify the monomer that would produce a given section of an addition polymer
**3. To construct repeating units based on provided monomers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on addition reactions of alkenes. Suitable for the OCR specification
By the end of this lesson KS5 students should be able to:
To know what an electrophile is
To describe what an electrophilic addition reaction is
To outline the mechanism for electrophilic addition
Mechanisms for electrophilic addition include halogen halides, halogen molecules, and the hydrogen molecule
Explanations surrounding major and minor products are also discussed in this lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on the properties of alkenes. This lesson is an introduction to the chapter on alkenes. This lesson follows the OCR specification.
By the end of the lessons students should be able:
1)To know the general formula of alkenes
2)To explain the shape and bond angle around each carbon atom of a C=C bond
3)To describe how π and σ bonds are formed in alkenes**
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
3 Full Lesson Bundle covering Analytical Techniques (mass spectrometry, IR spectroscopy and combined techniques in organic chemistry) . These lessons follow the OCR specification
Lesson 1: Mass Spectrometry in Organic Chemistry
**1) Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass
**2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures
Lesson 2: IR Spectroscopy
**1) To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses
**2)To understand how infrared spectroscopy works
**3)To understand the application of infrared spectroscopy
**4) To interpret IR spectra
Lesson 3: Combined Spectroscopic Techniques
**1)To apply combined spectroscopic techniques (IR spectroscopy, mass spectrometry and elemental analysis) to identify the structures of unknown compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Combined Techniques. Suitable for OCR AS Chemistry.
By the end of the lesson, students should be able to:
1)To apply combined spectroscopic techniques (IR spectroscopy, mass spectrometry and elemental analysis) to identify the structures of unknown compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on IR Spectroscopy. Suitable for OCR AS Chemistry.
By the end of the lesson, students should be able to:
To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses
2)To understand how infrared spectroscopy works
3)To understand the application of infrared spectroscopy
To interpret IR spectra
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectrometry in Organic Chemistry. Suitable for OCR AS Chemistry.
By the end of the lesson, students should be able to:
Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass
2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Bronsted Lowry Acids and Bases
By the end of this lesson KS5 students should be able to:
To describe the difference between a BrØnsted Lowry acid and base
To identify conjugate acid-base pairs
To explain the difference between monobasic, dibasic and tribasic acids
To understand the role of H+ in the reactions of acids with metals and bases (including carbonates, metal oxides and alkalis), using ionic equations
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
3 structured lessons covering topics from AS Chemistry Alkanes from the OCR Specification
Lesson 1: Properties of Alkanes
To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate
Explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion
Describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces
Lesson 2: Combustion of Alkanes
To understand why alkanes are good fuels
To recall the equations (both word and symbol) for complete combustion of alkanes
To recall the equations (both word and symbol) for incomplete complete combustion of alkanes
Lesson 3: Free Radical Substitution of Alkanes
1)To know what a free radical is
2) To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination
3) To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured lesson including starter activity, AfL work tasks and lesson slides on the combustion of alkanes. Suitable for the OCR specification.
By the end of this lesson KS5 students should be able to:
To understand why alkanes are good fuels
To recall the equations (both word and symbol) for complete combustion of alkanes of alkanes
To recall the equations (both word and symbol) for incomplete complete combustion of alkanes of alkanes
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured lesson including starter activity, AfL work tasks and lesson slides on the properties of alkanes. Suitable for the OCR specification
By the end of this lesson KS5 students should be able to:
To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate
Explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion
Describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces
All questions come with answers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured lesson including starter activity, AfL work tasks on the combustion of alkanes. This lesson is suitable for the AQA specification
By the end of this lesson KS5 students should be able:
To understand why alkanes are good fuels
To recall the complete and incomplete combustions equations (both word and symbol) of alkanes
To explain the environmental problems associated with pollutant products when alkanes are used as fuels
To explain the use of catalytic convertors and processes such as flue gas desulfurisation to remove gaseous pollutants produced during alkane combustion
All questions come with answers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
2 Lesson bundle covering the AS Chemistry topic on Ionisation Energy. Suitable for OCR, AQA and Edexcel
Lesson 1: Ionisation Energy (Part 1)
Define the term ‘first ionisation energy’ and successive ionisation energies
Describe the factors affecting ionisation energy
3)Explain the trend in successive ionisation energies of an element
Lesson 2: Ionisation Energy (Part 2)
Explain the trend in first ionisation energies down a group
Explain the trend in first ionisation energies across period 2
Explain the trend in first ionisation energies across period 3
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A well structured lesson including starter activity, AfL activities and main work task with answers on pH and neutralisation. Suitable for AQA GCSE Chemistry and higher tier combined science
Then by the end of this lesson KS4 students should be able to:
To state the ionic equation involved in neutralisation reactions
To describe the use of a universal indicator to measure pH changes
To compare acid strength and concentration
The teacher will be able to check students have met these learning objectives through mini AfL tasks and main work tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above