Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
3 revision documents summarising the equations and conditions students need to remember for the following chapters in AQA AS Chemistry:
The halogens
Group 2 metals
Alkanes
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
4 structured lessons covering topics from AS Chemistry Alkanes from the AQA Specification
Lesson 1: Fractional Distillation of Crude Oil
Describe what crude oil contains and to understand its uses
Explain how crude oil is separated into useful fractions on an industrial scale
Explain how crude oil is separated into useful fractions on an industrial scale
Lesson 2: Cracking of Alkanes
To describe what cracking is and its economic benefits
To explain what thermal and catalytic cracking
To compare and evaluate the conditions for and the products of thermal and catalytic cracking
Lesson 3: Combustion of Alkanes
To understand why alkanes are good fuels
To recall the complete and incomplete combustions equations (both word and symbol) of alkanes
To explain the environmental problems associated with pollutant products when alkanes are used as fuels
To explain the use of catalytic convertors and processes such as flue gas desulfurisation to remove gaseous pollutants produced during alkane combustion
Lesson 4: Free Radical Substitution of Alkanes
1)To know what a free radical is
2) To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination
3) To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured lesson including starter activity, AfL work tasks on cracking of alkanes
By the end of this lesson KS5 students should be able to:
To describe what cracking is and its economic benefits
To explain what thermal and catalytic cracking
To compare and evaluate the conditions for and the products of thermal and catalytic cracking
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured lesson including starter activity, AfL work tasks and lesson slides on free radical substitution reactions
By the end of this lesson KS5 students should be able to:
1.To know what a free radical is
2. To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination
3. To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and lesson slides on halogenoalkanes and their chemical reactions
By the end of this lesson KS5 students should be able to:
To Identify haloalkanes as primary, secondary or tertiary
To understand why haloalkanes are more reactive than alkanes
To describe what a nucleophile is and to state some examples
To outline the mechanism of nucleophilic substitution and elimination reactions involving haloalkanes
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on addition reactions of alkenes. Suitable for the AQA specification
By the end of this lesson KS5 students should be able to:
To know what an electrophile is
To describe what an electrophilic addition reaction is
To outline the mechanism for electrophilic addition
Mechanisms for electrophilic addition include halogen halides, halogen molecules, hydrogen molecule and sulfuric acid
Explanations surrounding major and minor products are also discussed in this lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on naming and drawing aromatic compounds
**By the end of this lesson KS5 students should be able to:
**1. State the IUPAC name of substituted aromatic compounds
**2. Construct the structure of aromatic compounds based on their IUPAC names
**3. Analyse the correct numbering system for di and trisubstituted aromatic compounds
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry Bundle on Foundations in Chemistry. Suitable for AQA, OCR and Edexcel
The lessons include:
Lesson 1: Relative Masses
Define the terms relative atomic mass, relative formula mass and relative molecular mass
Calculate the relative formula mass and relative molecular mass of compounds and molecules
Lesson 2: Ions and the Periodic Table
To predict the ionic charge of ions based on the position of the element in the periodic table
To recall the names of common atomic and molecular ions
To be able write the formula of ionic compounds
Lesson 3: The Mole and The Avogadro Constant
Know that the Avogadro constant is the number of particles in a mole
Calculate the number of moles present in a given mass of an element or compound using the mole equation
Rearrange the mole equation to calculate either the number of moles, Mr or mass of an element or compound
Lesson 4: Moles and Equations
Know how to balance symbol equations
Calculate the moles of reactants or products based on chemical equations and mole ratios
Calculate the masses of reactants used or products formed based on chemical equations and mole ratios
Lesson 5: Ideal Gas Equation
Recall the ideal gas equation
2)Understand the properties of an ideal gas
Rearrange the ideal gas equation to determine either pressure, temperature, moles or volume
Lesson 6: Empirical and Molecular Formulae
Understand what is meant by ‘empirical formula’ and ‘molecular formula’
Calculate empirical formula from data giving composition by mass or percentage by mass
Calculate molecular formula from the empirical formula and relative molecular mass.
Lesson 7: Percentage Yield and Atom Economy
Know how to balance symbol equations
Calculate atom economy and percentage yield from balanced symbol equations
Calculate the masses and moles of products or reactants from balanced symbol equations
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
6 Well Structured Lessons + BONUS Required Practical Lesson on Making Salts from the AQA Specification on Chemical Changes. This bundle is suitable for students studying GCSE Chemistry or Higher Tier Combined Science
The Following Lessons are included
Lesson 1: Reactivity Series and Metal Extraction
Deduce an order of reactivity of metals based on experimental results
Explain reduction and oxidation by loss or gain of oxygen
Explain how the reactivity is related to the tendency of the metal to form its positive ion
Lesson 2: Oxidation and Reduction (in terms of electrons)
write full ionic equations for displacement reactions
Write half equations for displacement reactions
identify in a half equation which species are oxidised or reduced
Lesson 3: Reactions of Metals and Acid
Describe how to make salts from metals and acids
Construct word equations from metal and acid reactions
Write full balanced symbol equations for making salts
Lesson 4: Metal Oxides
Identity that metals react with oxygen to form metal oxides
Explain reduction and oxidation by loss or gain of oxygen
Identify metal oxides as bases or alkalis
Lesson 5: pH and Neutralisation
State the ionic equation involved in neutralisation reactions
Describe the use of a universal indicator to measure pH changes
Compare acid strength and concentration
Lesson 6: Electrolysis of Ionic Compound
Know what electrolysis is and to state its uses
Explain how electrolysis works
Predict the reactions that occur at each electrode
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
6 Well Structured GCSE Chemistry Lessons on from the AQA Quantitative Chemistry Chapter
Lesson 1: Relative Formula Mass
To identify the relative atomic mass of an element from the periodic table
To be able to define the term relative atomic mass
To calculate relative formula masses from atomic masses
Lesson 2: Mass Changes in Reactions
To relate mass, volume and concentration
To calculate the mass of solute in solution
To relate concentration in mol/dm3 to mass and volume
Lesson 3: Moles
Describe the measurement of amounts of substance in moles
Calculate the number of moles in a given mass
Calculate the mass of a given number of moles
Lesson 4: Moles and Equations
calculate the masses of substances in a balanced symbol equation
calculate the masses of reactants and products from balanced symbol equations
calculate the mass of a given reactant or product.
Lesson 5: Percentage Yield & Atom Economy
To calculate percentage yield from balanced symbol equations
To calculate atom economy from balanced symbol equations
To calculate the masses and moles of products or reactants from balanced symbol equations
Lesson 6: Concentration of Solutions
To relate mass, volume and concentration
To calculate the mass of solute in solution
To relate concentration in mol/dm3 to mass and volume
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
These target stickers enables teachers and students to track their progress in science or other subjects on a weekly or biweekly bias. These stickers should be stuck in students’ books so they can take responsibility of their own learning and work progress. Teachers can easily see which students are not meeting targets and therefore requires intervention strategies
Fun Revision Quiz on AQA GCSE Biology: Inheritance, Variation and Evolution. Students will be tested using a series of questions on the following topics:
Antibiotic Resistance
The Theory of Evolution
Genetic Engineering
Variation
Classification and Evolutionary Trees
Asexual and Sexual Reproduction
Mitosis and Meiosis
DNA and Genes
Genetic Crosses
This quiz can be completed using A,B,C cards or on mini whiteboards
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks on atomic structure. Suitable for AQA GCSE Chemistry and Combined Science (Higher and foundation)
By the end of this lesson KS4 students should be able to:
Describe the atomic structure of an atom
Construct a diagram of the atomic structure of an atom
Calculate the number of sub-atomic particles in different elements
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A well structured lesson including starter activity, AfL work tasks on metal oxides. Suitable for AQA GCSE Chemistry or Combined Science
By the end of this lesson KS4 students should be able to:
Identity that metals react with oxygen to form metal oxides
Explain reduction and oxidation by loss or gain of oxygen
Identify metal oxides as bases or alkalis
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Creating a safe learning environment is important during pracitical activities. This Practical Routine is great for practical based subjects such as science, food tech, design techology and art. These rules can be delivered during a practical lesson or it can be used as displays in your classroom
A complete lesson including starter activity, AfL work tasks and main work tasks on the reactivity series and metal extraction. Suitable for AQA GCSE Chemistry and Combined Science (higher and foundation)
By the end of this lesson KS4 students should be able to:
Deduce an order of reactivity of metals based on experimental results
Explain reduction and oxidation by loss or gain of oxygen
Explain how the reactivity is related to the tendency of the metal to form its positive ion
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete including starter activity, AfL work tasks and main work tasks on oxidation and reduction reactions in terms of electrons. Suitable for GCSE Chemistry and higher tier combined science
By the end of this lesson KS4 students should be able to:
• write full ionic equations for displacement reactions
• Write half equations for displacement reactions
• identify in a half equation which species are oxidised or reduced
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, risk assessment and post practical plenary questions on Chemistry Required Practical :Preparing a pure, dry sample of a soluble salt from an insoluble oxide or carbonate
Lesson includes lab report for students to fill in
By the end of this lesson KS4 students should be able to:
→ Describe a practical procedure for producing a salt from a solid and an acid
→ Explain the apparatus, materials and techniques used for making the salt
→ Describe how to safely manipulate apparatus and accurately measure melting points
This lesson should be taught as a practical lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A well structured lesson including starter activity, AfL activities and main work task with answers on reactions of metals with acids. Suitable for AQA GCSE Chemistry and higher tier combined science
The lesson begins with a short starter task (DO NOW) recapping the definitions of oxidation, reduction and displacement reactions
Then by the end of this lesson KS4 students should be able to:
Describe how to make salts from metals and acids
Construct word equations from metal and acid reactions
Write full balanced symbol equations for making salts
The teacher will be able to check students have met these learning objectives through mini AfL tasks and main work tasks for students to complete
Please download the free resource from my shop called: ‘names and formulae of compounds and ions’ to support students when writing symbol equations for this lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A great revision tool for GCSE and A Level Chemistry students for learning how to construct symbol equations in chemistry . Test students regularly on the list of compounds and ions so they can build their recall on this topic