Hero image

Teach Science & Beyond

Average Rating4.78
(based on 27 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

129k+Views

83k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Qualitative Analysis of Ions
TeachScienceBeyondTeachScienceBeyond

Qualitative Analysis of Ions

(0)
A structured theory lesson including starter activity and main work tasks all with answers on Qualitative Analysis of Ions By the end of this lesson KS5 students should be able to: To carry out test tube reactions and record observations to determine the presence of the following anions : CO32- SO42- , Cl-, Br-, and I- To carry out test tube reactions and record observations to determine the presence of the following cations: NH4+, Fe2+, Fe3+, Mn2+ and Cu2+ To construct ionic equations to explain the qualitative analysis tests of cations and anions All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Disproportionation & The Uses of Chlorine
TeachScienceBeyondTeachScienceBeyond

Disproportionation & The Uses of Chlorine

(0)
A structured KS5 lesson including starter activity, and main work tasks all with answers on Disproportionation & The Uses of Chlorine By the end of this lesson KS5 students should be able to: To explain the term disproportionation To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions To evaluate the uses of chlorine (How Science Works) All tasks have worked out answers, which will allow students to self assess their work during the lesson For the 3rd learning objective, students will have an opportunity to explore the uses of chlorine beyond the curriculum by completing a group research task based on the following OCR specification point: HSW9,10,12 Decisions on whether or not to chlorinate water depend on balance of benefits and risks, and ethical considerations of people’s right to choose. Consideration of other methods of purifying drinking water. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
The Halogens: Properties & Reactivity
TeachScienceBeyondTeachScienceBeyond

The Halogens: Properties & Reactivity

(0)
A structured theory lesson including starter activity, AfL work tasks and main work tasks all with answers on The Halogens: Physical Properties and Trends in Reactivity By the end of this lesson KS5 students should be able to: To describe and explain the trend in boiling points of the halogens in terms of induced dipole-dipole interactions (London Forces) To describe and explain the trend in reactivity of the halogens illustrated by their displacement reaction with other halide ions To construct full and ionic equations of halogen-halide displacement reactions and to predict the colour changes of these reactions in aqueous and organic solutions All tasks have worked out answers, which will allow students to self assess their work during the lesson. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Transition Metals (OCR)
TeachScienceBeyondTeachScienceBeyond

Transition Metals (OCR)

6 Resources
5 Full Lesson Bundle + FREE practical lesson covering Transition Elements from OCR A Level Chemistry. Please review the learning objectives below Lesson 1: Transition Metals & Their Compounds To know the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge To understand the elements Ti–Cu as transition elements To illustrate, using at least two transition elements, of: (i) the existence of more than one oxidation state for each element in its compounds (ii) the formation of coloured ions (iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry Lesson 2: Transition Metals & Complex Ions To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands To use the terms complex ion and coordination number To construct examples of complexes with: (i) six-fold coordination with an octahedral shape (ii) four-fold coordination with either a planar or tetrahedral shape Lesson 3: Stereoisomerism in Complex Ions To understand the types of stereoisomerism shown by metal complexes, including those associated with bidentate and multidentate ligands including: (i) cis–trans isomerism e.g. Pt(NH3)2Cl2 (ii) optical isomerism e.g. [Ni(NH2CH2CH2NH2)3] 2+ To understand the use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division Lesson 4: Precipitation and Ligand Substitution Reactions To recall the colour changes and observations of reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ with aqueous sodium hydroxide and ammonia (small amounts and in excess) To construct ionic equations for the precipitation reactions that take place To construct ionic equation of the ligand substitution reactions that take place in Cu2+ ions and Cr3+ ions To explain the biochemical importance of iron in haemoglobin, including ligand substitution involving O2 and CO Lesson 5: Transition Elements & Redox Reactions To interpret the redox reactions and accompanying colour changes for: (i) interconversions between Fe2+ and Fe3+ (ii) interconversions between Cr3+ and Cr2O72− (iii) reduction of Cu2+ to Cu+ (iv) disproportionation of Cu+ to Cu2+ and Cu To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions Lesson 6: Practical on Precipitation and Ligand Substitution Reactions To make observations of the reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ in aqueous sodium hydroxide and ammonia To construct ionic equations for the redox reactions that take place For 23 printable flashcards on this chapter please click here: https://www.tes.com/teaching-resource/resource-12637622 For lessons on redox titrations involving transition metals please click here : Part 1: https://www.tes.com/teaching-resource/ocr-redox-titrations-part-1-12244792 Part 2: https://www.tes.com/teaching-resource/ocr-redox-titrations-part-2-12244807 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Stereoisomerism in Complex Ions
TeachScienceBeyondTeachScienceBeyond

Stereoisomerism in Complex Ions

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Stereoisomerism in Complex Ions **By the end of this lesson KS5 students should be able to: To understand the types of stereoisomerism shown by metal complexes, including those associated with bidentate and multidentate ligands including: (i) cis–trans isomerism e.g. Pt(NH3)2Cl2 (ii) optical isomerism e.g. [Ni(NH2CH2CH2NH2)3] 2+ To understand the use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Transition Metals & Complex Ions
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Complex Ions

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Complex Ions **By the end of this lesson KS5 students should be able to: To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands To use the terms complex ion and coordination number To construct examples of complexes with: (i) six-fold coordination with an octahedral shape (ii) four-fold coordination with either a planar or tetrahedral shape The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Transition Metals & Their Compounds
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Their Compounds

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks and plenary quiz on Transition Metals & Their Compounds. All answers included **By the end of this lesson KS5 students should be able to: To know the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge 2.To understand the elements Ti–Cu as transition elements To illustrate, using at least two transition elements, of: (i) the existence of more than one oxidation state for each element in its compounds (ii) the formation of coloured ions (iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Analysis (OCR)
TeachScienceBeyondTeachScienceBeyond

Analysis (OCR)

5 Resources
5 Full Lesson Bundle on Analysis from the OCR A Level Chemistry specification. Please review the learning objectives below. Lesson 1: Chromatography To interpret one-way TLC chromatograms in terms of Rf values To interpret gas chromatograms in terms of: (i) retention times (ii) the amounts and proportions of the components in a mixture To understand the creation and use of external calibration curves to confirm concentrations of components. Lesson 2: Qualitative Analysis of Organic Functional Groups To recall qualitative analysis of organic functional groups on a test-tube scale To design qualitative analysis tests to distinguish between two or more organic compounds Lesson 3: Carbon-13 NMR Spectroscopy To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about: The number of carbon environments in the molecule The different types of carbon environment present from chemical shift values Possible structures for the molecule Lesson 4: Proton NMR Spectroscopy (Part 1) To analyse proton NMR spectra of an organic molecule to make predictions about: The number of proton environments in the molecule The different types of proton environment present from chemical shift values Lesson 5: Proton NMR Spectroscopy (Part 2) (includes combined techniques) To analyse proton NMR spectra of an organic molecule to make predictions about: The different types of proton environment present from chemical shift values The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule Possible structures for the molecule Note: 2 Exam Questions on Combined Techniques are also included in lesson 5! Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Qualitative Analysis of Organic Functional Groups
TeachScienceBeyondTeachScienceBeyond

Qualitative Analysis of Organic Functional Groups

(0)
A well structured KS5 Lesson on Qualitative Analysis of Organic Functional Groups (Year 13). The lesson contains a starter activity and main work tasks, all with answers included By the end of the lesson students should be able: To recall qualitative analysis of organic functional groups on a test-tube scale To design qualitative analysis tests to distinguish between two or more organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Chromatography
TeachScienceBeyondTeachScienceBeyond

Chromatography

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on chromatography **By the end of the lesson, students should be able to: To interpret one-way TLC chromatograms in terms of Rf values To interpret gas chromatograms in terms of: (i) retention times (ii)  the amounts and proportions of the components in a mixture To understand the creation and use of external calibration curves to confirm concentrations of components. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Chemical Equilibrium Exam Questions
TeachScienceBeyondTeachScienceBeyond

Chemical Equilibrium Exam Questions

(0)
A 45 minute end of chapter test on chemical equilibrium. The test covers content from both year 12 and 13 OCR on chemical equilibrium. A markscheme with model answers is also included which enables students self assess their answers in class with their teacher or as a homework task. The test is based on the following learning objectives: Apply le Chatelier’s principle to deduce qualitatively (from appropriate information) the effect of a change in temperature, concentration or pressure, on a homogeneous system in equilibrium. Explain that a catalyst increases the rate of both forward and reverse reactions in an equilibrium by the same amount resulting in an unchanged position of equilibrium Deduce, for homogeneous and heterogeneous reactions, expressions for the equilibrium constant Kc. Calculate the values of the equilibrium constant, Kc (from provided or calculated equilibrium moles or concentrations), including determination of units. Estimate the position of equilibrium from the magnitude of Kc. Calculate, given appropriate data, the concentration or quantities present at equilibrium. Deduce, for homogeneous and heterogeneous reactions, expressions for the equilibrium constant Kp. Calculate the values of the equilibrium constant, Kp (from provided or calculated equilibrium moles or pressures), including determination of units. Explain the effect of changing temperature on the value of Kc or Kp for exothermic and endothermic reactions. State that the value of Kc or Kp is unaffected by changes in concentration or pressure or by the presence of a catalyst. Explain how Kc or Kp controls the position of equilibrium on changing concentration, pressure and temperature
Synthetic Routes in Organic Synthesis (OCR)
TeachScienceBeyondTeachScienceBeyond

Synthetic Routes in Organic Synthesis (OCR)

2 Resources
This discounted bundle includes: A full double lesson on synthetic routes in organic synthesis (all answers included) A follow up homework task (all answers included) A full revision summary of the year 12 & 13 organic reactions (perfect for making flashcards!) The full double lesson will cover the following learning objectives i) To identify individual functional groups for an organic molecule containing several functional groups ii) To predict the properties and reactions of organic molecules containing several functional groups iii) To create multi-stage synthetic routes for preparing organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Synthetic Routes in Organic Synthesis (Y13)
TeachScienceBeyondTeachScienceBeyond

Synthetic Routes in Organic Synthesis (Y13)

(0)
A complete lesson including starter activity, AfL work tasks, main work tasks and homework (all with answers included) on Synthetic Routes in Organic Synthesis (A level -Yr13) By the end of this lesson KS5 students should be able: i) To identify individual functional groups for an organic molecule containing several functional groups ii) To predict the properties and reactions of organic molecules containing several functional groups iii) To create multi-stage synthetic routes for preparing organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A2 Chemistry: OCR Synthetic Routes Revision
TeachScienceBeyondTeachScienceBeyond

A2 Chemistry: OCR Synthetic Routes Revision

(0)
A 14 page summary of all the organic synthesis reactions from the AS and A level OCR Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable Reaction summaries include: nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* electrophilic substitution reactions* reactions of phenols* carbon-carbon formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions* Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Nitrogen Compounds & Polymers (OCR)
TeachScienceBeyondTeachScienceBeyond

Nitrogen Compounds & Polymers (OCR)

6 Resources
6 Full Lesson Bundle on Nitrogen Compounds and Polymers suitable for the OCR A Level Chemistry specification. Please review the learning objectives below. Lesson 1: Introduction to Amines To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Lesson 2: Preparation of Amines To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Lesson 3: Amino Acids and Their Reactions To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Lesson 4: Chirality To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre To identify chiral centres in a molecule of any organic compound. To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes Lesson 5: Amides To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Lesson 6: Condensation Polymers 1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides 2. To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation 3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Condensation Polymers
TeachScienceBeyondTeachScienceBeyond

Condensation Polymers

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Condensation Polymers By the end of this lesson KS5 students should be able to: 1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides 2. To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation 3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Chirality
TeachScienceBeyondTeachScienceBeyond

Chirality

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Chirality By the end of this lesson KS5 students should be able to: To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre To identify chiral centres in a molecule of any organic compound. To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Amides
TeachScienceBeyondTeachScienceBeyond

Amides

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Amides By the end of this lesson KS5 students should be able to: To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Amino Acids And Their Reactions
TeachScienceBeyondTeachScienceBeyond

Amino Acids And Their Reactions

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Amino Acids And Their Reactions By the end of this lesson KS5 students should be able to: To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Preparation of Amines
TeachScienceBeyondTeachScienceBeyond

Preparation of Amines

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on The Preparation of Amines By the end of this lesson KS5 students should be able to: To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above