Hero image

HB science resources

Average Rating3.61
(based on 27 reviews)

A Science teacher since 2016 creating and sharing resources he uses with his own classes.

534Uploads

72k+Views

41k+Downloads

A Science teacher since 2016 creating and sharing resources he uses with his own classes.
Velocity Time and  Speed Time Graphs
hbscienceresourceshbscienceresources

Velocity Time and Speed Time Graphs

(0)
By the end of the lesson learners will be able to: Identify acceleration, constant velocity and deceleration on a velocity-time graph. Describe how to calculate distance travelled using a velocity-time graph. Compare the movement of two objects on a velocity-time graph.
Acceleration
hbscienceresourceshbscienceresources

Acceleration

(0)
By the end of the lesson learners should be able to: State the equation for acceleration Describe how to measure the acceleration of an object. Explain why a change in acceleration indicates a change in direction
Distance Time Graphs
hbscienceresourceshbscienceresources

Distance Time Graphs

(0)
By the end of the lesson learners should be able to: State the formula for speed. Describe what’s shown in a distance-time graph Explain why the gradient is the same as the speed on a distance-time graph.
Vectors and Scalars
hbscienceresourceshbscienceresources

Vectors and Scalars

(0)
By the end of the lesson learners should be able to: Identify scalars and vectors. Compare scalars and vectors. Convert scalars into vectors.
Wave Phases
hbscienceresourceshbscienceresources

Wave Phases

(0)
By the end of the lesson learners should be able to: Identify different types of waves. Describe how to measure properties of waves. Compare constructive and destructive interference.
Colours of Light
hbscienceresourceshbscienceresources

Colours of Light

(0)
A comprehension lesson that teaches students about the colours of light and how the primary colours contribute towards how we perceive objects around us. How objects reflect or absorb light colours. How filters influence light. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Justify how filters can affect how we see an object. By the end of the lesson learners should be able to: Success criteria Explain what happens when light passes through a prism describe how primary colours add to make secondary colours explain how filters and coloured materials subtract light. Powerpoint contains 25 slides.
The Eye and the Camera
hbscienceresourceshbscienceresources

The Eye and the Camera

(0)
A comprehension lesson that teaches students about how the eye and the camera treat light. Students will have the opportunity to create a simple pinhole camera. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Compare how the eye and the camera interpret light differently. By the end of the lesson learners should be able to: Success criteria: Identify parts of the camera and the eye. Describe how light is processed by the camera and the eye. Compare the eye and the camera. Powerpoint contains 15 slides.
Reflection of Light
hbscienceresourceshbscienceresources

Reflection of Light

(0)
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about the law of reflection, specular reflection and diffuse scattering and how objects appear in mirrors (virtual images) Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. An animation is included to show how a virtual image is generated. By the end of the lesson students should be able to: Learning objective: Develop an understanding of how light reflects and the law of reflection. Success criteria: Identify types of reflection. Describe the law of reflection. Explain the appearance of virtual objects. This lesson contains 40 slides
Refraction
hbscienceresourceshbscienceresources

Refraction

(0)
By the end of the lesson learners should be able to: State what is meant by refraction. Describe how light refracts through mediums. Explain why refraction is useful.
Wave speed
hbscienceresourceshbscienceresources

Wave speed

(0)
By the end of the lesson learners should be able to: Identify a wavelength. Describe how to calculate wave speed. Explain why wave speed can change.
Detecting Sound - The Ear
hbscienceresourceshbscienceresources

Detecting Sound - The Ear

(0)
By the end of the lesson learners should be able to: Identify the parts that make up the ear. Describe how the ear manipulates sound. Explain why people can experience hearing loss / damage.
Drag Forces friction and air resistance
hbscienceresourceshbscienceresources

Drag Forces friction and air resistance

(0)
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about drag forces friction and air resistance. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. By the end of the lesson students should be able to: Learning objective: Develop an understanding of how drag forces affect the movement of an object. Success criteria: Identify 2 drag forces. Describe how drag forces affect objects. Explain why air resistance and friction can be useful and a nuisance. This lesson contains 22 slides
Loudness, Pitch and Sound Waves
hbscienceresourceshbscienceresources

Loudness, Pitch and Sound Waves

(0)
By the end of the lesson learners should be able to: Identify the cause of sound waves. Describe how amplitude, loudness, frequency and pitch are connected. Explain why people can’t talk to another in space.
Newton's Third Law
hbscienceresourceshbscienceresources

Newton's Third Law

(0)
By the end of the lesson learners should be able to: Identify action and reaction forces. Describe Newton’s third law. Explain why people might experience pain when placing a force on an object.
Forces at a Distance gravity and electrostatic
hbscienceresourceshbscienceresources

Forces at a Distance gravity and electrostatic

(0)
A resource containing a comprehensive powerpoint slideshow that will guide learners through gravity and electrostatic non contact forces. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. By the end of the lesson students should be able to: Learning objective: Develop an understanding of how forces can act at a distance and explain why these forces are present. Success criteria: -Identify non-contact forces. -Describe how objects react to some non-contact forces. -Explain why non-contact forces are needed for our daily lives. This lesson contains 17 slides Produced to be used when delivering the activate 1 pathway.
Hooke's law and the Spring Constant K
hbscienceresourceshbscienceresources

Hooke's law and the Spring Constant K

(0)
A resource containing 2 powerpoint slides for 2 lessons and a worksheet for applying Hooke’s law and analysing data. I run the resource as an initial practical for investigating Hooke’s law and the second lesson to further solidify theory. Tasks are differentiated to suit the needs of each learner. Progress checks take place after each success criteria to measure the progress of learners. For the practical lesson: By the end of the lesson students should be able to: Learning objective: Investigate the effects of forces on the extension of a spring. Success criteria: -Identify independent and dependent variables. -Describe how to write a method concerning spring extension. -Explain why repeatability and reliability are important factors within experiments. This lesson contains 17 slides. For the theory lesson: By the end of the lesson students should be able to: Learning objective: To analyse the results and draw conclusions between the spring practical and Hooke’s law theory. Success criteria: Identify the forces needed to extend and compress a spring. Describe Hooke’s law. Explain why the pattern for Hooke’s law does not remain indefinitely. This lesson contains 17 slides. The worksheet contains 2 pages.
Static Electricity
hbscienceresourceshbscienceresources

Static Electricity

(0)
A comprehensive lesson which teaches students about charges and how these charges contribute towards static electricity. Students will then progress to find how these charges interact with another and generate current. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Justify how charges behave and how this contributes to electricity. By the end of the lesson learners should be able to: Success criteria: Identify the 2 charges. Describe how materials can become charged. Explain why static shocks occur. Powerpoint contains 20 slides. A worksheet is also included to complement the Van Der Graaf.