Hero image

HB science resources

Average Rating3.38
(based on 30 reviews)

A Science teacher since 2016 creating and sharing resources he uses with his own classes.

552Uploads

86k+Views

47k+Downloads

A Science teacher since 2016 creating and sharing resources he uses with his own classes.
Transformers and The National Grid
hbscienceresourceshbscienceresources

Transformers and The National Grid

(0)
By the end of the lesson learners should be able to: State how electrical energy is distributed by the national grid. Describe how the national grid efficiently transfers electrical energy. Explain the use of transformers.
Electrical Safety
hbscienceresourceshbscienceresources

Electrical Safety

(0)
By the end of the lesson learners should be able to: Identify 2 devices used to deal with electrical overload. Describe how fuses and earthing deal with electrical overloads. Explain the movement of electricity and why earthing works.
Electricity in the Home
hbscienceresourceshbscienceresources

Electricity in the Home

(0)
By the end of the lesson learners should be able to: State what’s meant by direct current and alternating current. Describe the contents of a 3 pin plug. Explain why an Earth wire is used in a plug.
Electrical Power
hbscienceresourceshbscienceresources

Electrical Power

(0)
By the end of the lesson learners should be able to: State what’s meant by power. Describe how power can be calculated. Explain why changing the time that energy is transferred in affects power.
Energy in Circuits
hbscienceresourceshbscienceresources

Energy in Circuits

(0)
By the end of the lesson learners should be able to: Identify how energy is used in a circuit. Describe what the energy can be used for in a circuit. Explain why people are using low energy bulbs.
Series and Parallel circuits.
hbscienceresourceshbscienceresources

Series and Parallel circuits.

(0)
By the end of the lesson learners should be able to: Identify a series and parallel circuits. Describe the properties of series and parallel circuits. Explain why parallel circuits are used in homes.
Circuit Devices
hbscienceresourceshbscienceresources

Circuit Devices

(0)
By the end of the lesson learners should be able to: Identify the circuit symbols for: a thermistor and a LDR. Describe how resistance changes in a thermistor and LDR. Explain why both LDRs and thermistors are used.
IV graphs and Ohms law
hbscienceresourceshbscienceresources

IV graphs and Ohms law

(0)
A comprehensive lesson which teaches students about how IV graphs appear for fixed resistors, filament bulbs and diodes. The lesson also delves into the reasoning behind why these trends arise. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Use Ohm’s law to justify the trends seen in IV graphs for a fixed resistor, filament bulb and LED. By the end of the lesson learners should be able to: Success criteria: -Identify generally what happens to current as voltage increases. -Describe how to calculate resistance from a voltage-current graph. -Compare how the resistance changes with load in: fixed resistors, filament bulbs and diodes. Powerpoint contains 22 slides and a collection of past paper questions including the marking scheme.
Voltage and Resistance
hbscienceresourceshbscienceresources

Voltage and Resistance

(0)
A comprehensive lesson which teaches students the basics of what is meant by voltage and resistance. Students will be given the opportunity to practice the E = QV and V = IR equations as well as learn how to used a voltmeter in a circuit successfully. By the end of the lesson learners should be able to: State what’s meant by voltage and resistance. Describe how temperature affects resistance. Explain why a high voltage is dangerous. A checkpoint style plenary is used to assess understanding.
Current and Circuits
hbscienceresourceshbscienceresources

Current and Circuits

(0)
By the end of the lesson learners should be able to: Identify circuit symbols. Describe how to measure and calculate current. Explain why ammeters can read a value as minus.
Phases of the Moon
hbscienceresourceshbscienceresources

Phases of the Moon

(0)
By the end of the lesson learners should be able to: Identify all phases of the Moon Describe how light from the Sun can reflect from the Moon. Explain how the Moon appears different in the night sky.
Day and night
hbscienceresourceshbscienceresources

Day and night

(0)
By the end of the lesson learners should be able to: Identify what causes day and night time. Describe how the Earth moves: Through rotating: Around the Sun: Explain the link between the rotation of the Earth and the effect on days.
The Universe and Our solar system
hbscienceresourceshbscienceresources

The Universe and Our solar system

(0)
A comprehensive lesson which teaches students about the universe and its contents. Students will then progress to learn about our solar system and orbiting objects in space. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Develop an understanding of what makes up our universe. By the end of the lesson learners should be able to: Success criteria: I can identify components of the universe. I can describe our solar system. I can explain why gravity is needed for solar systems to survive. Powerpoint contains 31 slides.
Transverse and longitudinal waves and wave speed
hbscienceresourceshbscienceresources

Transverse and longitudinal waves and wave speed

(0)
A 6 page mini-booklet that should ensure students are: Able to identify longitudinal waves, Able to identify transverse waves, Able to describe the amplitude of a wave, Able to describe the wavelength of a wave, Able to describe frequency, Able to identify the effects of amplitude and frequency on sound, Able to rearrange equations using the triangle, Able to use the wave speed equation. Includes reading for understanding tasks. Suitable for higher ability KS3 students and KS4 students.