A revision poster that includes material needed for section 5 of the edexcel iGCSE combined science double award biology. Section 5 - blood and organs
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 4 of the edexcel iGCSE combined science double award biology. Section 4 - Respiration and gas exchange
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 2 of the edexcel iGCSE combined science double award physics. Section 2 - electricity
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 1 of the edexcel iGCSE combined science double award physics. Section 1 - Forces and Motion
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 9 of the edexcel iGCSE combined science double award biology. Section 9 - Uses of biological molecules
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A revision poster that includes material needed for section 3 of the edexcel iGCSE combined science double award physics. Section 3 Waves
A blank copy for students to fill in is also included for students to test their knowledge.
I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached.
Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
A comprehensive lesson which will teach students about mutations and the role of siRNA
Contains differentiated tasks in order to meet the needs of different learners.
Learning objective: Analyze the impact of mutations on gene expression, protein structure and function, and organismal traits, considering both beneficial and harmful effects.
Success criteria:
I can define mutations and explain why mutations affect the produced protein.
Critically evaluate the role of siRNA and RISC in regulating gene expression at the post-transcriptional level, emphasizing their impact on mRNA stability, translation efficiency, and cellular processes.
3. I can critically assess the ethical considerations surrounding siRNA-based therapies, addressing concerns about potential unintended consequences and the manipulation of gene expression.
Contains 17 slides and a lesson plan
I used this resource to teach the Pearson international BTEC level 3 unit 14A genetics course.
A comprehensive lesson which will teach students about the process of transcription and translation
Contains support slides to aid learners.
Differentiated tasks in order to meet the needs of different learners.
Learning objective: Analyze the intricate molecular mechanisms of transcription and translation, explaining how genetic information flows from DNA to RNA and ultimately to functional proteins.
Success criteria:
I can describe the different types of RNA within a cell and relate this to their location.
I can justify why RNA plays an interconnecting role within the cell.
I can predict and evaluate the effects of a mutation from the DNA code to the entire cell.
Contains 23 slides and a lesson plan
I used this resource to teach the Pearson international BTEC level 3 unit 14A genetics course.
A comprehensive double lesson which will teach students about DNA structure and DNA replication.
Contains support slides to aid learners.
Differentiated tasks in order to meet the needs of different learners.
Learning objective: Evaluate the roles of enzymes in DNA replication
Success criteria:
I can identify the components of nucleotides.
I can describe the structure of DNA and RNA
I can compare the structure of DNA and RNA
I can identify the enzymes and proteins present during DNA replication.
I can describe the process of DNA replication.
I can explain what is meant by the semi conservative hypothesis.
Contains 18 slides and a lesson plan
I used this resource to teach the Pearson international BTEC unit 14A genetics course.
A comprehension lesson that teaches students how to create and analyse Sankey Diagrams.
The concept is introduced in the context of money to firstly engage the students (dirham currency is used as the students I taught were in the UAE, however, this should be fairly simple to understand as it is labelled below).
Support sheets are also included to guide students should it be needed.
Tasks are differentiated to suit the needs of each learner.
Progress checks are placed after each success criteria checkpoint to assess understanding.
By the end of the lesson students should be able to:
Success criteria:
I can critically analyse a Sankey diagram to identify quantifiable components.
I can construct and adapt Sankey diagrams
I can calculate efficiency of a system from its Sankey diagram.
Learning objective: Develop and interpret Sankey diagrams to visualize and analyze complex data flows.
Powerpoint contains 33 slides and a lesson plan is also attached.
Resource designed to use when delivering the Pearsons iBTEC Applied Science:
Unit 1: Principles and Applications of Biology I
Success criteria:
Identify some of the main bones in the body.
Describe what is meant by different fractures.
Explain why children are more likely to break their bones.
A series of 3 lessons which teach students the principles of industrial fermentation.
**Lesson 1: Bacteria and yoghurt **
Learning objective: Evaluate the conditions needed for bacteria to thrive and produce insulin / yoghurt.
Success criteria:
Identify the steps of yogurt production.
Describe the role of bacteria in fermentation.
Evaluate the use of industrial fermenters.
21 slides.
Lesson 2: Yeast and bread
Learning objective: Explain why yeast is used in the process of manufacturing bread.
Success criteria:
Identify the equation for fermentation.
Describe how bread is made.
Explain why people don’t become drunk from eating bread…
8 slides
Lesson 3: practical investigation
Learning objective: Analyse how factors affect the growth of yeast and justify your conclusions.
Success criteria:
I can identify independent and dependent variables.
I can describe control variables that will impact the investigation.
I can evaluate how temperature affects growth.
23 slides
Each activity offered is differentiated and each lesson includes progress checks.
Past paper questions are also included to ensure adequate challenge is set to students.
Content was made for iGCSE students for edexcel 9-1 combined science.
A comprehensive lesson which teaches students about Fleming’s Left Hand Rule, the motor effect and applying this to a simple motor. Students will also be able to use the F = BIL equation quantify the amount of force experienced by a wire.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Use and apply the left hand rule in order to justify the movement of a wire within a magnetic field.
By the end of the lesson learners should be able to:
Success criteria:
I can identify the components of the left hand rule.
I can justify the motion of the wire based on the rule.
I can explain why motors are able to spin.
Powerpoint contains 22 slides and a collection of past paper questions including the marking scheme.
Resource designed to use when delivering the Pearsons iBTEC Applied Science:
Unit 5: Principles and Applications of Biology II
Learning aim A: Understand biological molecules and pathways and their effect on the body
Consists of 32 slides
Slides were designed on Powerpoint and includes minor guidance on how to structure their coursework.
Success criteria:
I can identify where proteins are found and how they are used in the body.
I can describe the different structures of protein
I can explain why a lack of proteins in the body can lead to disorders.
Resource designed to use when delivering the Pearsons iBTEC Applied Science:
Unit 5: Principles and Applications of Biology II
Learning aim A: Understand biological molecules and pathways and their effect on the body
Consists of 7 slides
Slides were designed on Powerpoint and includes minor guidance on how to structure their coursework.
Success criteria:
I can identify lipids.
I can describe the function of lipids in the body.
I can compare lipids to carbohydrates.
Resource designed to use when delivering the Pearsons iBTEC Applied Science:
Unit 5: Principles and Applications of Biology II
Learning aim A: Understand biological molecules and pathways and their effect on the body
Consists of 6 slides
Slides were designed on Powerpoint and includes minor guidance on how to structure their coursework.
Success criteria:
I can identify where carbohyrates are found and their structure.
I can describe how some carbohydrates are different to each other.
I can Explain why carbohydrates are needed by the body.
Originally created for the BTEC Applied Science level 3 qualification Unit 5 - Physics.
By the end of the lesson learners should be able to:
Recall what is meant by mass flow continuity.
Describe factors that can affect volume flow and pressure.
Use the Bernoulli principle to justify how an aeroplane experiences lift.
The resource contains past paper questions and mark scheme answers.
Slides were originally created using google slides, opening in microsoft powerpoint might cause slight misalignment - open in google slides to avoid this.
Originally created for the BTEC Applied Science level 3 qualification Unit 5 - Physics.
By the end of the lesson learners should be able to:
Recall the difference between Newtonian and Non-Newtonian fluids
Describe pseudoplastic, dilatant, thixotropic, and rheopectic fluids.
Justify the uses of these different fluids.
The resource contains past paper questions and mark scheme answers.
Slides were originally created using google slides, opening in microsoft powerpoint might cause slight misalignment - open in google slides to avoid this.
Originally created for the BTEC Applied Science level 3 qualification Unit 5 - Physics.
By the end of the lesson learners should be able to:
Recall what is meant by streamline and turbulent flow.
Describe what contributes to streamline and turbulent flow.
Justify why viscosity is a factor that affects the flow of a fluid.
The resource contains past paper questions and mark scheme answers.
Slides were originally created using google slides, opening in microsoft powerpoint might cause slight misalignment - open in google slides to avoid this.
Originally created for the BTEC Applied Science level 3 qualification Unit 5 - Physics.
By the end of the lesson learners should be able to:
Recall that imperfections can lead to cracks forming in a material.
Describe how tension is expressed in a material and how cracks can lead to a concentration of stress which eventually leads to brittle fractures.
Justify why creep and fatigue are factors that must be accounted for by engineers.
The resource contains past paper questions and mark scheme answers.
Slides were originally created using google slides, opening in microsoft powerpoint might cause slight misalignment - open in google slides to avoid this.