Hero image

J Rogers' Shop

Average Rating4.70
(based on 3 reviews)

Science / Physics Specialist topics. Fun, interesting and engaging!

10Uploads

12k+Views

2k+Downloads

Science / Physics Specialist topics. Fun, interesting and engaging!
KS3 - Circuits 1
jamesjosephrogersjamesjosephrogers

KS3 - Circuits 1

(0)
Approx. lesson plan: To understand that a power source provides energy as a flow of electric current and needs a complete circuit to flow. To know how to draw simple circuit diagrams. • To identify the circuit components • To create a circuit • To explain why the lightbulb lights up Identify electrical devices in diagram -Car Phone Toaster TV Cooker Hoover Light Washing machine CD player Kettle Iron Fridge Nothing to write / introduce the topic / electrical circuits Give time to write title and date Verbally explain keywords while/if they write them down. Pichu = electron ‘pretend this baby Pikachu is an electron’ PD = amount of kick behind each electron. More volts = more electrons flowing. Electrons carry charge Students must form a circle. One is nominated as the bulb. Teacher is battery. Give ‘charge’ (a sweet) to every 6th pupil. When charge reaches the bulb it waves. Charge = energy. Can travel faster than electrons – can pass it to each other instead if they are just shuffling. Circuit diagram drawings Construct circuit + test + draw Recap Symbols on drawings / practically create and test circuits. Draw 2 more circuits
KS3 - Circuits 2 (animated)
jamesjosephrogersjamesjosephrogers

KS3 - Circuits 2 (animated)

(0)
KS3 - Circuits 2 Has basic animated slides with examples of electron movement and principles of carrying charge. Follows from KS3 - Circuits 1 and leads on to concept of resistance. Ends with question about lightning (air has a high resistance, how does lightning 'flow'?) Infomation: Links to prior topics : Basic physics, Circuits 1 Skills Developed: Diagrams/graphical work, physical to abstract, logic Learning Objectives : Revise PD, electrons and charge To identify new circuit components and understand conductors To explain what is happening in a circuit, using different models To infer a relationship between voltage current and resistance Assessment Criteria for Objectives: Comparison of models Understanding of relationships between VIR Teaching & Learning Strategies : Visual and tactile, labelling, abstraction, comparison modelling, modelling with rope as circuit Resources / Materials Required School circuit kit (cells, cables, switches, bulbs) Ammeters Optional Rope Model Lab Safety Considerations [CLEAPSS / Hazcards / COSHH] Electrical safety (1.5-3v, IE negligible, but good time to start on electrical safety) Practical Work/Demonstration Circuit creation – Battery + bulb + ammeter to measure, Optional rope model of a circuit Literacy /Numeracy/ICT incl. School-wide objectives Numeracy links with voltage calculations , literacy with the labels. Other Broader/Cross-curricular links - Household / hobby electronics, DT links, Scientific inquiry
KS3 - Resistance (animated)
jamesjosephrogersjamesjosephrogers

KS3 - Resistance (animated)

(0)
KS3 - Resistance (follows Circuits 2) Links to prior topics : Basic physics, Circuits 1, Circuits 2, PD/Current, series, parallel Skills Developed: Diagrams/graphical work, physical to abstract, logic, problem solving. Articulation, relationships between values Learning Objectives : Revise PD, electrons and charge To explain what effects resistance has on the current and PD in a circuit. Using the concept of resistance to explain how a bulb can blow Assessment Criteria for Objectives: Comparison of models Fill in analogous worksheet Determine V=IR relationship from experiment Teaching & Learning Strategies Experimentation with circuits to practically determine the relationship of V=IxR Resources / Materials Required School circuit kit (cells, cables, switches, bulbs) Ammeters, resistors (1kOhm & 10kOhm) Lab Safety Considerations [CLEAPSS / Hazcards / COSHH] Electrical safety (1.5-3v, IE negligible, but still worth pointing out) Practical Work/Demonstration Circuit creation – Battery + bulb + ammeter to measure, rope model of a circuit Literacy /Numeracy/ICT incl. School-wide objectives Numeracy links with voltage calculations, literacy with the labels. Other Broader/Cross-curricular links – [Citizenship, Sustainable Development, Scientific Inquiry, Critical Thinking, Articulation] Household/hobby electronics, DT links, Scientific inquiry Overview: Adding lights/ recall series or parallel Comparison of heating system (water) and electrical circuit Radiator/water model Compare resistance / radiators Keywords Main Activity Construct circuit Get results for current. Change resistor Deduce ohms law VIR. Use triangle handout for scaffolding See if they can infer laws before showing slide. End question about modelling circuits - extension
KS3 - Ohms Law & Ohmic Heating (Animated + revision slides)
jamesjosephrogersjamesjosephrogers

KS3 - Ohms Law & Ohmic Heating (Animated + revision slides)

(0)
KS3- Ohms Law / Effects of Resistance Main Topic : Ohms Law, Ohmic Heating & Current/Voltage Graphs Skills Developed: Physical to abstract reasoning, logic/ problem solving. Articulation, relationships between values Reading Graphs Learning Objectives : To explain the relationship between VIR mathematically To identify the relationships between current and P.D. on a graph To explain the proportional relationship of I and V using Ohms Law Teaching & Learning Strategies Demo of I and R relationship with fixed Voltage using nichrome wire
KS3 -  Electrostatics & Van Der Graff
jamesjosephrogersjamesjosephrogers

KS3 - Electrostatics & Van Der Graff

(0)
Electrostatics: **This introduces the topic, there is room for a practical demo with a Van DerGraff generator makes up the last 15 minutes of a 60 minute lesson** Skills Developed: Physical to abstract reasoning, Observation Links to prior topics : PD/Current, series, parallel, circuits Learning Objectives : To explain the concept of charge transfer To explain why we get shocks from things To predict how a charged object will interact Assessment Criteria for Objectives: Statements to demonstrate LOs Observations Resources / Materials Required: Van Der Graff generator, accessories, balloon, Lab Safety Considerations [CLEAPSS / Hazcards / COSHH]: High voltage (low current) shock risk Practical Work/Demonstration: Van Der Graff generator – generate static charge and discharge/use to demonstrate Literacy /Numeracy/ICT incl. School-wide objectives: Numeracy links with voltage calculations, Literacy in expression and formulation of hypothesis. Other Broader/Cross-curricular links: Household electronics, DT links, Scientific inquiry.