Hero image

484Uploads

144k+Views

63k+Downloads

A level Chemistry: Amino acids, Amides and Chirality
srshaw89srshaw89

A level Chemistry: Amino acids, Amides and Chirality

(0)
OCR A level Chemistry: 27.2 Amino acids, Amides and Chirality This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Locants: alpha, beta, and gamma Functional groups of amino acids General formula for amino acids Reactions of amino acids (alkali and acid) Esterification of amino acids Amide functional groups Naming amide molecules Drawing optical isomers Explanation of superimposable and non-superimposable images Identifying chiral centers
OCR AS level Physics: Materials
srshaw89srshaw89

OCR AS level Physics: Materials

4 Resources
OCR AS level Physics presentations for module 3: Materials. All presentations come with worked examples, solutions and homeworks. This covers topics from Hooke’s Law to Young Modulus.
A level Chemistry: Condensation Polymers
srshaw89srshaw89

A level Chemistry: Condensation Polymers

(0)
OCR A level Chemistry: 27.3 Condensation Polymers This PowerPoint is a whole lesson included with student activities, animated answers, homework questions with answers provided. This lesson covers: Recap of addition polymerisation Identifying monomers and repeat units from condensation polymers Polyesters and ester links Polyamides and amide links Polyesters and polyamides formed from one monomer Polyesters and polyamide formed from two monomers Alkali hydrolysis of polyamides and polyesters Acid hydrolysis of polyamides and polyesters
OCR A level Physics: Magnetic Fields
srshaw89srshaw89

OCR A level Physics: Magnetic Fields

6 Resources
OCR A level Physics: Chapter 23 Magnetic Fields is apart of the Module 6: Particle and Medical Physics All presentations come with worked examples, solutions and homeworks. 23.1 Magnetic fields 23.2 Understanding magnetic fields 23.3 Charged particles in magnetic fields 23.4 Electromagnetic induction 23.5 Faraday’s law and Lenz’s law 23.6 Transformers Attraction and repulsion of magnets Rules for magnetic field lines The magnetic field of Earth Applying the right-hand cork screw rule How to create uniformed magnetic fields Solenoids Fleming’s left hand rule Determining the direction of force on a current carrying conductor Calculating the magnitude of force on a current carrying conductor Angles between the magnetic field and current carrying conductor An experiment to determine the magnetic flux density of a field. Apply Fleming’s left-hand rule to charged particles Deriving an equation for the magnetic force experienced by a single charged particle (F = BQv) Charged particles describing (moving) in circular paths in magnetic fields. The velocity selector. The Hall probe and Hall voltage. Electromagnetic induction produces an induced e.m.f Conditions to produce electromagnetic induction How to increase electromagnetic induction Magnetic flux density, magnetic flux, and magnetic flux linkage Units of weber (Wb) Magnetic flux density and magnetic flux linkage Faraday’s Law Lenz’s Law Alternators and induced e.m.f. Graphs of flux linkage and induced e.m.f. Structure of transformers Step-up and step-down transformers The turn-ratio equation The ideal transformer equation Why transformers are used in the National Grid
OCR AS level Physics: Waves 2
srshaw89srshaw89

OCR AS level Physics: Waves 2

6 Resources
OCR AS level Physics presentations for module 4: Waves 2 All presentations come with worked examples, solutions and homeworks. This covers topics from Superposition of Waves to Harmonics with different boundary conditions.
OCR AS level Physics: Laws of Motion
srshaw89srshaw89

OCR AS level Physics: Laws of Motion

5 Resources
OCR AS level Physics presentations for module 3: Materials. All presentations come with worked examples, solutions and homeworks. This covers topics from Newton’s laws to conservation of momentum in two dimensions.
OCR AS level Physics: Forces in Action
srshaw89srshaw89

OCR AS level Physics: Forces in Action

9 Resources
OCR AS level Physics presentations for module 3: Forces in Action. All presentations come with worked examples, solutions and homeworks. This covers topics from weight as a force to Archimedes’ principle.
OCR AS level Physics: Electrical Circuits
srshaw89srshaw89

OCR AS level Physics: Electrical Circuits

6 Resources
OCR AS level Physics presentations for module 4: Energy, Power, and Resistance. All presentations come with worked examples, solutions and homeworks. This covers topics from Kirchhoff’s laws to potential dividers and sensing circuits.
OCR AS level Physics: Waves 1
srshaw89srshaw89

OCR AS level Physics: Waves 1

9 Resources
OCR AS level Physics presentations for module 4: Waves 1 All presentations come with worked examples, solutions and homeworks. This covers topics from wave properties to Snell’s law and total internal reflection.
GCSE Chemistry: Carboxylic Acids
srshaw89srshaw89

GCSE Chemistry: Carboxylic Acids

(0)
This PowerPoint presentation with worked examples and student questions covers: • Functional groups of carboxylic acids, alcohols, alkanes, and alkenes. • Mnemonic device for naming carboxylic acids • General formula for carboxylic acids • Drawing the structural formula for carboxylic acids • Carboxylic acids as weak acids and • Acid reactions with bases, metals, and carbonates • Oxidation reactions from alcohols to carboxylic acids
OCR AS level Physics: Quantum Physics
srshaw89srshaw89

OCR AS level Physics: Quantum Physics

4 Resources
OCR AS level Physics presentations for module 4: Quantum Physics. All presentations are full lesson PowerPoints with worked examples and homeworks with complete worked answers. The Photon Model Energy of a single photon Converting from electron-volts to Joules. Frequency of the electromagnetic spectrum Determining Plank’s constant with LEDs Threshold potential difference difference Photoelectric Effect Threshold frequency Producing photoelectrons Kinetic energy of photoelectrons Linking frequency and wavelength The electromagnetic spectrum, frequency and energy. Einstein’s Photoelectric Equation The photoelectric equation Work function and Kinetic Energy Determining work function from a graph Determining threshold frequency from a from graphical analysis. Determining Plank’s constant from graphical analysis. Wave Particle Duality deBroglie wavelength equation Diffraction of electrons and protons Comparing wavelengths of particles with different masses Kinetic energy and wavelength
GCSE Chemistry: Instrumental Methods of Analysis
srshaw89srshaw89

GCSE Chemistry: Instrumental Methods of Analysis

(0)
This PowerPoint presentation with worked examples and student questions covers: Jobs in Environmental Chemistry Definition of Instrumental Methods of Analysis Advantages of Instrumental Methods of Analysis Gas Chromatography and Chromatograms Mass Spectrometer and Relative Atomic Mass Identifying a molecule with use of a mass spectrum
OCR AS level Physics: Work, Energy and Power
srshaw89srshaw89

OCR AS level Physics: Work, Energy and Power

4 Resources
OCR AS level Physics presentations for module 3: Work, Energy and Power. All presentations come with worked examples, solutions and homeworks. This covers topics from conservation of energy to derivations for kinetic energy.
OCR A level Chemistry: Amines, Amino Acids, and Polymers
srshaw89srshaw89

OCR A level Chemistry: Amines, Amino Acids, and Polymers

3 Resources
OCR A level Chemistry: Aromatic Compounds is apart of the Module 6: Organic Chemistry and Analysis. All presentations come with worked examples, solutions and homeworks. 27.1 Amines 27.2 Amino acids, Amides and Chirality 27.3 Condensation Polymers Aliphatic and aromatic hydrocarbons Amines being derived from ammonia (NH3) Classifying amines as primary, secondary, and tertiary Naming amines Naming ammonium salts Amines neutralisation reactions with acids Preparation of aliphatic amines Preparation of aromatic amines Locants: alpha, beta, and gamma Functional groups of amino acids General formula for amino acids Reactions of amino acids (alkali and acid) Esterification of amino acids Amide functional groups Naming amide molecules Drawing optical isomers Explanation of superimposable and non-superimposable images Identifying chiral centers Recap of addition polymerisation Identifying monomers and repeat units from condensation polymers Polyesters and ester links Polyamides and amide links Polyesters and polyamides formed from one monomer Polyesters and polyamide formed from two monomers Alkali hydrolysis of polyamides and polyesters Acid hydrolysis of polyamides and polyesters
OCR AS level Chemistry: Organic Synthesis
srshaw89srshaw89

OCR AS level Chemistry: Organic Synthesis

2 Resources
OCR AS level Chemistry: Organic Synthesis is apart of the Module 4: Core Organic Chemistry and Analysis All presentations come with worked examples, solutions and homeworks Heating under reflux Distillation Re-distillation Purifying Organic Products Removing impure acids from organic compounds Drying agents Functional Groups - Alkane, Alkene, Haloalkane, Alcohols, Carboxylic Acid, Ketone, Aldehyde, Ester, Amine, Nitrile. One-step synthetic routes with reagents and conditions Two-step synthetic routes with reagents and conditions
OCR A level Chemistry: Aromatic Compounds
srshaw89srshaw89

OCR A level Chemistry: Aromatic Compounds

4 Resources
OCR A level Chemistry: Aromatic Compounds is apart of the Module 6: Organic Chemistry and Analysis. All presentations come with worked examples, solutions and homeworks Molecular, empirical, skeletal formula for benzene. The Kekulé model for benzene Evidence against the Kekule model The delocalised model for benzene Nomenclature for benzene rings and aromatic (arene) compounds Naming benzene containing compounds Drawing benzene containing compounds Defining an electrophile Substitution reactions Nitration of Benzene Reaction mechanisms Halogenation of Benzene Common Halogen Carriers Friedel-Crafts Alkylation Reactions Acyl Chloride Acylation Reactions of Benzene Reactivity of Alkenes and Arenes Naming phenols Distinguishing between phenols and alcohols Distinguishing between phenols and alkenes Distinguishing between phenols and carboxylic acids Phenol as a weak acid Electrophilic reactions with phenols Comparing and explaining the reactivity of phenols and benzene Naming positions on the aromatic ring Activating groups and deactivating groups 2-and-4-directing and 3-directing groups ortho-and-para directing and meta directing groups Two-step synthesis routes for benzene using directing groups. Nitration of benzene Halogenation of benzene Friedel-Crafts Alkylation of benzene
OCR A level Chemistry: Organic Synthesis
srshaw89srshaw89

OCR A level Chemistry: Organic Synthesis

3 Resources
OCR A level Chemistry: Organic Synthesis is apart of the Module 6: Organic Chemistry and Analysis. All presentations come with worked examples, solutions and homeworks. 28.1 Carbon-Carbon Bond Formation 28.2 Further Practical Techniques 28.3 Further Synthetic Routes Forming nitriles from haloalkanes Forming nitriles from aldehydes and ketones Forming amines from nitriles (reduction) Forming carboxylic acids from nitriles (hydrolysis) Friedel-Crafts alkylation of benzene Acylation of benzene with acyl chloride Filtration under reduced pressure Purification through Recrystallisation Preparation of Melting Point Sample Melting point determination with an electric heater Melting point determination with a Thiele tube Functional groups Reactions of benzenes Reactions of phenols Common reactions between different functional groups Reaction conditions and reagents
GCSE Physics: Distance, Time and Speed
srshaw89srshaw89

GCSE Physics: Distance, Time and Speed

(0)
This presentation covers material for OCR Physics Gateway 9-1 P2.1.1 Covered: Measuring and calculating Accuracy of stop watch vs light gate Conversion of units Exam style question Worked examples Students questions with answers
OCR A level Physics: Capacitance
srshaw89srshaw89

OCR A level Physics: Capacitance

6 Resources
OCR A level Physics: Chapter 21 Capacitance is apart of the Module 6: Particle and Medical Physics All presentations come with worked examples, solutions and homeworks. 21.1 Capacitors 21.2 Capacitors in circuits 21.3 Energy stored by capacitors 21.4 Discharging capacitors 21.5 Charging capacitors 21.6 Uses of capacitors Electrical quantities, symbols, and units SI prefixes and standard form Definition of a capacitor Structure of a capacitor Calculating capacitance, charge, and potential difference. Uses of capacitors in circuits. Rules for capacitors in parallel (potential difference, charge, and capacitance). Rules for capacitors in series (potential difference, charge, and capacitance). Applying the rules in series and parallel. Creating a circuit to calculate the charge stored on the capacitor. Work done of a capacitor depends upon the initial potential difference and capacitance. Work done is provided by the source of potential difference. Deriving three equations for work done of a capacitor. Exponential increase and exponential decay Explaining how capacitors discharge through a resistor in parallel Definition of time constant for a capacitor Showing that time constant has units of seconds Iterative method for finding how capacitors discharge Using exponentials and logs. Solving a differential equation (needed for A-level Maths). Explaining how capacitors charge with a resistor in series Explaining how 𝑉, 𝐼, or 𝑄, change with time 𝑡 for a charging capacitor. Sketching graphs for 𝑉, 𝐼, or 𝑄, after time 𝑡 for a charging capacitor. Calculating 𝑉, 𝐼, or 𝑄, change with time 𝑡 for a charging capacitor. Calculating power output from a circuit containing a capacitor A rectifier circuit - changing an alternating input to a smooth output