Hero image

Nteach's Shop

Average Rating4.73
(based on 339 reviews)

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.

158Uploads

348k+Views

307k+Downloads

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
GCSE Physics P1 - Electromagnetic Spectrum
NteachNteach

GCSE Physics P1 - Electromagnetic Spectrum

(6)
Complete lesson on Electromagnetic Spectrum/Uses/Risks with key content from AQA Physics. This lesson covers the electromagnetic spectrum, waves uses, wave risk, order and size of waves and mobile risks. Starter uses a fun riddle challenge which pupils enjoyed doing in Generating Electricity and so asked for another. The lesson explores the spectrum by order of identities of waves, wavelength, frequency and energy. A quick task on multipliers, standard form and prefixes helps pupils understand the notation commonly seen on the EM spectrum and also as questioned in exams. A task gets pupils to explore different EM waves using information sheet for them to use to summarise key information. Then mobile phone risk is then discussed along with correlation and causation. Plenary quick quiz and some exam style questions which can be used as mini plenaries to link to exams. More lessons in same format for P1. https://www.tes.com/member/Nteach
GCSE AQA Physics - 10.6 - Impact Forces
NteachNteach

GCSE AQA Physics - 10.6 - Impact Forces

(4)
New GCSE AQA Physics lesson on Impact Forces written in line with new AQA Physics specification. All questions provided with answers within power point. Starter ‘Car Wars’ looks at the test collision between an old and a new vehicle to stimulate discussion of collisions and safety - posing the question which car is safer and why? This is discussed and reviewed focusing on crumple zones and comparing how each car crumpled and why this is good (or for the old car, bad). Crumple zones, air bags and seat belts are detailed and discussed for common function - to increase impact time to decrease impact force. This concept is highlighted by exploring the physics mathematically. Review questions with answers are provided for the topic. Lesson Objectives: - Identify key safety features of vehicles to reduce impact force. - Explain how ‘impact time’ affects impact force. - Relate momentum to impact forces in collisions and explain how impact forces can be reduced in car collisions. - Calculate impact forces resulting from collisions.
GCSE AQA Physics- P10.3 - Forces and Braking
NteachNteach

GCSE AQA Physics- P10.3 - Forces and Braking

(2)
New GCSE AQA Physics lesson on Forces and Braking written in line with new AQA Physics specification. All questions are provided with answer within the Power Point. Lesson starts by discussing the speed limit for vehicles against the maximum speeds vehicles can achieve. Stopping distances is explored by looking at different size vehicles going at the same velocity and then braking. Stopping distance is also reviewed against different velocities. Thinking distance and braking distance are highlighted and discussed with a class activity exploring the effects of different factors on thinking distance with higher or lower activity. A class activity is also provided to investigate pupils reaction time to relate to thinking distance. A quick review on resultant forces in relation to vehicles is explored through questioning, this leads to the physics of stopping vehicles through braking. This leads to an exploration of the physics of braking in terms of changes to energy stores and then also how to calculate braking force. Summary questions are provided on this topic to finish the lesson. Plenary poses the starting question again in light of new information pupils will now have. Lesson Objectives: - Evaluate different vehicle speeds for stopping distances - Explain what happens during braking of a vehicle. - Identify and explain what can effect the stopping distance of a vehicle. - Investigate how a drivers reaction time effect stopping distance. - Calculate the braking force of a required for moving vehicles.
GCSE AQA Physics - P16.3 - Planet, satellites and orbits
NteachNteach

GCSE AQA Physics - P16.3 - Planet, satellites and orbits

(4)
New GCSE AQA Physics lesson on ‘Planet, satellites and orbits’ written in line with new AQA Physics specification. Lesson Objectives: Identify what keeps objects in orbit. Identify the direction of force on an orbiting object. Explain how the velocity of a body changes as the body moves around its orbit. Explain how an object stays in orbit
GCSE Physics P1 - Heat transfer Convection
NteachNteach

GCSE Physics P1 - Heat transfer Convection

(1)
Complete lesson on Convection including key content from AQA GCSE Physics. Simple starter to get pupils thinking about convection and also true and false to challenge misconceptions (such as heat rises). Includes experiment requiring potassium permanganate in a beaker and convection loop (if doing teacher demo) but could use food dye as a substitute. Plenary uses plenty of application questions and relation to the vacuum flask. More P1 lessons in same format. https://www.tes.com/member/Nteach
GCSE AQA Physics - P6.7 - Pressure and Volume
NteachNteach

GCSE AQA Physics - P6.7 - Pressure and Volume

(2)
New GCSE AQA Physics lesson on 'Pressure and Volume' written in line with new AQA Physics specification. Lesson Objectives: - Explain the effects of changing pressure on volume of a gas (and vice versa). - Use the equation ‘PV=constant’ (Boyle’s Law) to solve problems. - Correctly explain trends in terms of proportionality. - Explain the effects of quickly compressing a gas on temperature.
GCSE Physics P1 - U-values and Payback time
NteachNteach

GCSE Physics P1 - U-values and Payback time

(0)
Complete lesson on u-values and payback time with key content from AQA Physics. Starter includes 10 questions to serve as a summary of previous heat transfer content. Main includes simple insulation experiment leading to explanation of u-values explaining the units clearly. Pupils often get confused with U-values and what they mean, direct link to experiment can help by discussing results from the experiment and which material would have a higher or lower u-value. U-values related to key home insulation methods, this lead onto cost effectiveness and payback time. Plenary uses exam style questions including a 6 mark question. More lessons to follow in same format for P1. https://www.tes.com/member/Nteach
GCSE Physics P1 - Energy Efficiency, Sankey Diagrams & Efficiency Calculation
NteachNteach

GCSE Physics P1 - Energy Efficiency, Sankey Diagrams & Efficiency Calculation

(0)
Complete lesson on Energy Efficiency, Sankey Diagrams & Efficiency Calculation with key content from AQA Physics. Starter uses a correct the statements challenge to recap previous content to this topic Main includes a step by step guide to drawing Sankey diagrams with questions for pupils attempt following. Also covered is efficiency calculation. Lesson concludes with independent task on comparing filament and CFL bulbs. Included is a 6 mark exam question homework with peer marking description for use in following lesson (homework hand-in date). Worksheet includes Sankey diagrams task and calculating efficiency task to be printed on one A4 sheet to save on printing. Set-up to print '2 pages per sheet' to produce one worksheet. More lessons to in same format for P1. https://www.tes.com/member/Nteach
GCSE AQA Physics - P2.1 - Energy Transfer by Conduction
NteachNteach

GCSE AQA Physics - P2.1 - Energy Transfer by Conduction

(3)
New GCSE AQA Physics lesson on 'Energy Transfer by Conduction' written in line with new AQA Physics specification. Choice of two different starters to prompt discussion of heat transfer by conduction. Either looking at cooking using rods through meat or placing ice on different materials to melt. A series of scenarios are shown involving heat conduction which allow pupils to discuss why things feel hot or cold. A class experiment is provided which uses different material rods to identify which one conducts heat quickest. The results of this are then discussed with questions to start promoting good scientific investigation skills. Thermal conductivity is explored by looking at the meaning of each words separately and then together. Pupils are then to put a number of different material in order of thermal conductivity, which is then discussed for common materials which are highly conductive or poorly conductive. This leads onto thermal insulation and some final review questions. Lesson Objectives: 1) Provide definitions for conductors and insulators. 2) Identify common conductors and insulators and explain in relation to thermal conductivity. 3) Relate thermal conductivity to rate of energy transfer. 4) Explain ways in which rate of heat transfer can be reduced.
GCSE AQA Physics - P6.5 Latent Heat
NteachNteach

GCSE AQA Physics - P6.5 Latent Heat

(4)
New GCSE AQA Physics lesson on ‘Latent Heat’ written in line with new AQA Physics specification. Lesson Outline: Starter review the change of state graph to look at why the temperature does not increase at the transition point of state of matter whilst it substance is still heated. To answer this internal energy is first recapped. This highlights the importance of the potential energy of the substance/ position of particles in a substance for different states and also overall internal energy. This leads to the conclusion that the energy is being used to change these particles position and overcome forces of attraction within a substance in order to change state - therefore no temperature increase. Latent heat of fusion and latent heat of vaporisation are both discussed in detail with the equation and in relation to the graph. Examples of the equation in use show how to carry out calculations to pupils. Lesson concludes with review questions. Lesson Objectives: - Explain what happens to a substance as it is provided more energy without a temperature change. - State and explain what is meant by specific latent heat. - Compare and contrast latent heat of fusion and latent heat of vaporisation - Successfully apply latent heat equations to solve problems.
GCSE AQA Physics - P10.4 - Momentum
NteachNteach

GCSE AQA Physics - P10.4 - Momentum

(1)
New GCSE AQA Physics lesson on 'Momentum' written in line with new AQA Physics specification. Lesson Objectives: 1) State what momentum is. 2) Relate momentum to mass and velocity. 3) Calculate the momentum of an object with correct units. 4) Apply the conservation of momentum to 2 objects colliding or exploding.
Christmas Science Quiz 2015 (2 choices)
NteachNteach

Christmas Science Quiz 2015 (2 choices)

(2)
A Christmas Science Quiz to finish a hard term with to have a bit of fun with the class and at the same time still doing work in class relevant to Science. 2 quizzes to use, one basic and one extended. Basic Quiz contains 5 rounds: 1)Biology Trivia (5 questions) 2)Chemistry Trivia (5 questions) 3) Physics Trivia (5 questions) 4) What is under the microscope? (10 questions) 5) Who is the Secret Scientist Santa? (5 questions) With some bonus questions between each round. (5 questions) Extended Quiz contains 6 rounds: 1)Biology Trivia (10 questions) 2)Chemistry Trivia (10 questions) 3) Physics Trivia (10 questions) 4) What is under the microscope? (10 questions) 5) Who is the Secret Scientist Santa? (5 questions) 6) What is the pix-elated piece of science equipment? (5 questions) With some bonus questions between each round.
GCSE AQA Physics- P1.6-7 - Energy and Efficiency
NteachNteach

GCSE AQA Physics- P1.6-7 - Energy and Efficiency

(3)
New GCSE AQA Physics lesson on 'Energy and Efficiency' written in line with new AQA Physics specification. The lesson can start with either a task to correct statements provided about energy or to discuss what happens to wasted energy. Different types of bulbs are shown through images which pupils are likely to have comes across, they are then prompted to discuss how they are different and why we use different ones, this lead to talking about efficiency. Useful and wasted energy are explained and related to context and energy flow diagrams previously used. Also a key explanation of what happens to wasted energy is given. Pupils must then identify whether particular energy changes are useful or wasteful for certain devices. Energy efficiency is detailed to students and then presented as 'units of energy' in a form similar to sankey diagrams (which are no longer required by AQA but can help students rationalise percentages). A class activity is outlined which requires groups of pupils to shown how energy is split by different devices and can help students visually see how portions of energy are distributed. Following this the energy equation is given which is then used by two sets of review questions. The lesson concludes with content for higher tier students which looks at ways energy waste can be reduced. Lesson Objectives: 1) Explain what is meant by useful and wasted energy. 2) Explain what eventually happens to wasted energy. 3) Calculate the energy efficiency of different appliances. 4) Detail how energy transfers can be made more efficient. (Higher tier only)
GCSE AQA Physics - 10.1 - Force and acceleration F=ma (Newtons Second law)
NteachNteach

GCSE AQA Physics - 10.1 - Force and acceleration F=ma (Newtons Second law)

(4)
New GCSE AQA Physics lesson on 'Newtons Second Law - Force and Accerlation' written in line with new AQA Physics specification. Starter prompts pupils to discuss how there weight would vary on different planets, this is to set-up how weight is different to mass. Key terms Force, mass and acceleration are reviewed for clarity leading to the equation F=ma, the units, how it can be rearranged and then review questions to practice the use of. The equation is then reviewed in terms of proportionality as required by the AQA specification. Following this F=ma is related to W=mg to highlight that weight is a force and different to mass. This then leads to pupils calculating their mass on different planets - alternatively a task is provided to calculate the mass of a schoolbag on different planets. For higher tier pupils intertial mass is explained. Learning Objectives: - Clearly explain what force, mass and acceleration are. - Relate how mass and acceleration effect the size of a force. - Calculate the resultant force on an object by its mass and acceleration. - Explain the difference between weight and mass. - What is meant by inertia (Higher Tier)
GCSE 9-1 AQA Physics 4.7 - Electromagnetism (whole unit)
NteachNteach

GCSE 9-1 AQA Physics 4.7 - Electromagnetism (whole unit)

6 Resources
6 Lessons covering the topic of Electromagnetism for the AQA GCSE 9-1. Lessons included: Magnets and Magnetic fields Magnetic field and current The Motor Effect The Generator Effect AC DC Generators Transformers and the National Grid Please take time to review detail of each included resources before purchase to check suitability for your teaching.
GCSE AQA Physics - Resolution of Forces - Parallelogram/Geometric Method
NteachNteach

GCSE AQA Physics - Resolution of Forces - Parallelogram/Geometric Method

(7)
New GCSE AQA Physics lesson on ' Resolution of Forces' written in line with new AQA Physics specification. All questions provided with answers within power point. The starter provides some simple combination of forces questions to review the subject of resultant forces - one question has two forces acting on different planes which pupils will be unfamiliar with and therefore how to solve - this prompts the lesson. The intuitive resultant force and direction is highlighted but also how we need to calculate exactly what they are. The parallelogram/geometric method is taught step by step with a worked example, this is done a second time with another example but with the class prompted to follow it and do the same on their own paper which also allows for discussion of difference in results. A collection of questions allows pupils to practice use of this method. This method is then used for inclined planes to explain frictional force acting to put object in equilibrium on inclined planes. Review questions again allow pupils to practice this. Lesson Objectives: - Review resolving simple combination of forces. - Identify when forces are acting on different lines/planes. - Calculate the resultant force on an object which has equal forces acting on different lines/planes. - Calculate the resultant force on an object which has unequal forces acting on different lines/planes. A worksheet is not provided as it is best for pupils to work on their own paper to define their own scales for this methodology.
GCSE Physics P1 - The Big Bang Theory and the Expanding Universe
NteachNteach

GCSE Physics P1 - The Big Bang Theory and the Expanding Universe

(1)
Complete lesson on the 'Big Bang Theory' and the 'Expanding Universe' with key content from AQA Physics. Starter uses post-it note from pupils onto the board which allows the teacher to review thoughts from pupils on the origins of the Universe. This is good starter to discuss different pupils beliefs. Following this a focus on 'theories' discusses what theories are and why this is important in Science and evidence which support theories. The main part of the lesson guides pupils through the Big Bang Theory explaining the evidence behind this theory (red-shift and CMBR) with clear description of the Doppler effect. End of lesson uses a written task for pupils to summarise the key points on red-shift. This can then be peer marked by the class using the guidance provided. A homework is included asking pupils to research the fate of the Universe as this is common question from pupils. Plenary includes exam style questions. More lessons to in same format for P1. https://www.tes.com/member/Nteach
Design an Experiment worksheet
NteachNteach

Design an Experiment worksheet

(3)
A worksheet to help pupils design/plan their own experiment/investigation. Some pupils still struggle with the intention of science experiments and each aspect required to carry out a successful experiment. The worksheet which is the same format as the experiment planning sheet poses each aspect as a question for pupils to really think what each aspect is about. This can be used as sheet to complete with a guided experiment allowing pupils to understand what each part of planned experiment is about or it can be used as a guide to help a pupil design an experiment (with some guidance of course)