A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This fully-resourced lesson focuses on the events of meiosis which specifically contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover the 4th and final part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how meiosis produces daughter cells that are genetically different from each other.
In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations.
Due to the detail of this lesson, it is estimated that this will take about 2 hours of A-level teaching time to deliver
This lesson bundle contains 6 fully-resourced lessons which have been designed to engage and motivate the students whilst covering the detailed content of topic 3 (Enzymes) in the CIE A-level Biology specification. These globular proteins catalyse biological reactions throughout living organisms so a deep understanding of this topic is important for all of the other 18 topics in this course.
The wide range of activities that are included within the lesson PowerPoints and accompanying resources will cover the following specification points:
Enzymes are globular proteins that catalyse reactions
The mode of action of enzymes
The lock and key hypothesis and the induced-fit model
The effect of temperature on the rate of an enzyme-catalysed reaction
The effect of pH on the rate of an enzyme-catalysed reaction
The effect of enzyme and substrate concentration on the rate of an enzyme-catalysed reaction
The effect of inhibitor concentration on the rate of an enzyme-catalysed reaction
The effect of competitive and non-competitive inhibitors on enzyme activity
Immobilising an enzyme in alginate
Normally the first topic to be taught in the second year of the AQA A-level Biology course, topic 5 contains some very important biological processes which include photosynthesis, respiration and energy transfer between organisms. All 17 lessons included in this bundle are highly detailed and have been planned at length to ensure that students remain motivated and engaged whilst being constantly challenged on their current understanding. Links to previously-covered topics are also made throughout the lessons.
The following specification points are covered in these lessons:
TOPIC 5.1
The light-dependent reaction of photosynthesis
The use of reduced NADP and ATP from the light-dependent reaction in the light-independent reaction
The light-independent reaction of photosynthesis
Environmental factors that limit the rate of photosynthesis
TOPIC 5.2
Respiration produces ATP
Glycolysis as the first stage of aerobic and anaerobic respiration
The conversion of pyruvate to lactate or ethanol in the anaerobic pathways
The link reaction and the Krebs cycle
Synthesis of ATP by oxidative phosphorylation
Other respiratory substrates
TOPIC 5.3
Gross primary production and net primary production
The net production of consumers
Farming practices designed to increase the efficiency of energy transfer
TOPIC 5.4
The role of microorganisms in the nitrogen cycle
The phosphorus cycle, including the role of saprobionts and mycorrrhizae
The use of artificial and natural fertilisers
The environmental issues arising from the use of fertilisers including leaching and eutrophication.
If you would like to sample the quality of the lessons in this bundle, then download the chloroplast structure, anaerobic respiration, oxidative phosphorylation, GPP and phosphorus cycle lessons as these have been uploaded for free
This lesson describes the principles of cell fractionation and ultracentrifugation as used to separate cell components. The engaging PowerPoint and accompanying resources are part of the final lesson in a series of 4 lessons which have been planned to cover the details of point 2.1.3 of the AQA A-level biology specification.
This lesson begins by informing the students that several of the key terms in this lesson, including the lesson title, end in -ation, and therefore they have to use the clues to work out that the 1st one is cell fractionation. A quiz round like this runs throughout the lesson, introducing homogenisation, filtration and ultracentrifugation in a memorable way. Time is taken to explain each of the processes in detail, and where possible, links are made to previously covered content as well as content that will be met in future lessons. For example, students will learn that the solution must be kept ice-cold and isotonic, and they are challenged to recognise that the low temperature is to reduce the activity of potentially damaging enzymes, before being told that there will be no net movement of water by osmosis because of the isotonic solution. The answers to all understanding and prior knowledge checks are embedded into the PowerPoint to allow students to assess their progress. When explaining the process of ultracentrifugation, the students are given an opportunity to predict which of 6 listed organelles will be found in the 1st pellet because it is the heaviest, right down to the lightest organelle. The lesson finishes with several exam-style questions to check that they’ve understood this separation technique and have a strong knowledge of cells and their organelles.
This lesson has been planned to continously link with the other lessons in topic 2.1 (Cell structure).
This fully-resourced lesson describes the ultrastructure of an eukaryotic cell and describes the relationship between the structure and function of the organelles. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 2.1 (v) of the Edexcel A-level Biology B specification
As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all of the 10 topics in the Edexcel A-level B course and intricate planning has ensured that links are made to topic 1 and details are provided to link to the upcoming topics. A wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, will maintain motivation and engagement whilst covering the finer details of the following structures and organelles:
nucleus
nucleolus
ribosomes
rough endoplasmic reticulum
Golgi apparatus
lysosomes
smooth endoplasmic reticulum
mitochondria
cell surface membrane
centrioles
vacuole (+ tonoplast)
chloroplasts
cell wall
As mentioned above, all of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge
Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to cover the work
This lesson explains the effects of temperature on the rate of enzyme activity and describes how to calculate the temperature coefficient. The PowerPoint and the accompanying resources have been designed to cover point 5.21 of the Edexcel International A-level Biology specification and this lesson has been specifically planned to tie in with a lesson in topic 2 where the roles and mechanism of action of enzymes were introduced.
The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in modules 6 and 5.
Moving forwards, the next part of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured.
The final part of the lesson introduces the Q10 temperature coefficient and students are challenged to apply this formula to calculate the value for a chemical reaction and a metabolic reaction to determine that enzyme-catalysed reactions have higher rates of reaction
This lesson focuses on the key terms associated with ecosystems and describes how populations are affected by a range of factors. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 4 lessons that cover the details of point 7.4 of the AQA A-level Biology specification
As shown in the cover image, a modified version of the quiz competition BLOCKBUSTERS runs throughout the lesson and this introduces new terms as well as challenging students to recall key terms that were encountered in previous topics. These include population, ecosystems, competition, niche, abiotic factors and carrying capacity. Each time a term is met, time is taken to describe its meaning and to explain its relevance and context in this topic of populations in ecosystems. Exam-style questions are also used to challenge the students to apply their understanding and displayed mark schemes allow them to assess their progress. Prior knowledge checks interspersed within the lesson which check on topics such as the nitrogen cycle, adaptations and the biological classification of a species
This fully-resourced lesson challenges the students to use fully labelled genetic diagrams to interpret the results of monohybrid and dihybrid crosses as detailed in topic 7.1 (Inheritance) of the AQA A-level Biology specification. Step-by-step guides are used to demonstrate how diagrams for the inheritance of one and two genes should be constructed and a focus is given to the areas where students commonly make mistakes, such as in writing out the gametes. The main task of each section of the lesson provides an opportunity for the students to apply their understanding by calculating phenotypic ratios. All of the questions have fully-explained mark schemes and students can assess their progress and address any misconceptions immediately. Key genetic terminology is used throughout the lesson and mirrors that used in actual exam questions.
This lesson describes the meaning of biodiversity, explains how it relates to a range of habitats, and describes how to calculate an index of diversity. The PowerPoint and accompanying worksheets are part of the first in a series of 2 lessons that have been designed to cover the content of topic 4.6 of the AQA A-level Biology specification. The second lesson describes the balance between conservation and farming.
A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise species, population, biodiversity, community and natural selection from their respective definitions. Once biodiversity as the variety of living organisms in a habitat is revealed, the students will learn that this can relate to a range of habitats, from those in the local area to the Earth. When considering the biodiversity of a local habitat, the need for sampling is discussed and some key details are provided to initially prepare the students for these lessons in topic 7. Moving forwards, the students will learn that it is possible to measure biodiversity within a habitat, within a species and within different habitats so that they can be compared. Species richness as a measure of the number of different species in a community is met and a biological example in the rainforests of Madagascar is used to increase its relevance. The students are introduced to an unfamiliar formula that calculates the heterozygosity index and are challenged to apply their knowledge to this situation, as well as linking a low H value to natural selection. The rest of the lesson focuses on the index of diversity and a 3-step guide is used to walk students through each part of the calculation. This is done in combination with a worked example to allow students to visualise how the formula should be applied to actual figures. Using the method, they will then calculate a value of d for a comparable habitat to allow the two values to be considered and the significance of a higher value is explained. All of the exam-style questions have mark schemes embedded in the PowerPoint to allow students to continuously assess their progress and understanding.
A detailed and engaging lesson presentation (52 slides) and accompanying worksheet that looks at competition between organisms and the different types of relationships that exist as a result of this interaction. The lesson begins by looking at the meaning of the biological term, "competition", and then introduces this when it occurs between the same species and different species. Students are challenged to consider the different resources that animals compete for before an activity based competition is used to get them to recognise how this competition can cause changes to the population size.
Moving forwards, students will meet the three main types of ecological relationship and look at them in greater detail, with predation being a main focus.
There are regular progress checks throughout the lesson (with displayed answers) so that students can assess their understanding.
This lesson has been designed for GCSE students but can be used with more-able KS3 students who are looking at ecosystems and the relationships that exist within them
An informative and engaging lesson (46 slides) that looks at the topic of immobilised enzymes and focusses on ensuring that students understand this topic around three main ideas. By the end of the lesson, students will be able to explain why immobilised enzymes are used, describe the different methods by which they are produced and describe some of their uses in biotechnology. Time is taken throughout the lesson to make sure that students understand the disadvantages associated with this process and that they are able to explain the specific limitations of each method.
This lesson has been designed for students studying A-level Biology
An engaging lesson presentation (75 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B7(Ecology) of the AQA GCSE Biology specification (specification unit B4.7).
The topics that are tested within the lesson include:
Communities
Abiotic factors
Biotic factors
Levels of organisation
Recycling materials
Decomposition
Deforestation
Global warming
Trophic levels
Pyramids of biomass
Transfer of biomass
Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics B1 - B5, that will assessed on PAPER 1. It has been specifically designed for students on the Pearson Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to take place at the local hospital where the students have to visit numerous wards and clinics and the on-site pharmacy so that the following sub-topics can be covered:
Cancer as the result of uncontrolled cell division
The production of gametes by meiosis
Mitosis and the cell cycle
Sex determination
The difference between communicable and non-communicable diseases
The pathogens that spread communicable diseases
Identification of communicable diseases
Treating bacterial infections with antibiotics
Evolution of antibiotic resistance in bacteria
Vaccinations
Genetic terminology
Genetic diagrams
Structures involved in a nervous reaction
A Reflex arc
Risk factors
Chemical and physical defences
Osmosis and percentage gain and loss
Fossils as evidence for human evolution
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for assistance sheets when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and evolution by natural selection.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 1 exam.
This bundle of 6 revision lessons challenges the students on their knowledge of the content of all of the topics that are detailed in the Edexcel GCSE Combined Science specification and can be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics.
The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content.
If you would like to see the quality of these lessons, download the paper 2, 4 and 6 revision lessons as these have been shared for free
This is a fully-resourced revision lesson that includes a detailed and engaging powerpoint (81 slides) that uses a combination of exam questions, understanding checks, quick differentiated tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 8 (Grey Matter) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification.
The specification points that are tested within the lesson include:
Know the structure and function of sensory, relay and motor neurones including the role of Schwann cells and myelination.
Understand how the nervous systems of organisms can cause effectors to respond to a stimulus.
Understand how the pupil dilates and contracts.
Understand how a nerve impulse (action potential) is conducted along an axon including changes in membrane permeability to sodium and potassium ions and the role of the myelination in saltatory conduction.
Know the structure and function of synapses in nerve impulse transmission, including the role of neurotransmitters, including acetylcholine.
Understand how IAA bring about responses in plants to environmental cues
Know the location and functions of the cerebral hemispheres, hypothalamus, cerebellum and medulla oblongata in the human brain.
Understand how magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and computed tomography (CT) scans are used in medical diagnosis and the investigation of brain structure and function.
Understand how imbalances in certain, naturally occurring brain chemicals can contribute to ill health, including dopamine in Parkinson’s disease and serotonin in depression, and to the development of new drugs.
Understand the effects of drugs on synaptic transmissions, including the use of L-Dopa in the treatment of Parkinson’s disease and the action of MDMA in Ecstasy.
Students will be engaged by the numerous quiz rounds such as “From NUMBERS 2 LETTERS” and “COMMUNICATE the WORD” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
An informative lesson presentation (37 slides) and accompanying worksheets that guides students through the different methods that can be used to rearrange formulae as they will be required to do in the Science exams. The lessons shows them how to use traditional Maths methods involving inverse operations and also equation triangles to come to the same result. These are constantly linked to actual examples and questions to show them how this has to be applied. There are regular progress checks, with explained answers, so that students can assess their understanding.
This bundle of 6 lessons covers a lot of the content in Module 6.1.3 (Manipulating genomes) of the OCR A-level Biology A specification and includes an end of module revision lesson. The topics covered within these lessons include:
The principles of DNA sequencing
The development of new DNA sequencing techniques
The principles of the PCR and its applications
The principles and uses of electrophoresis to separate DNA fragments and proteins
The principles and techniques of genetic engineering
6.1.3 REVISION
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
A fully-resourced lesson which has been designed for GCSE students and includes an engaging lesson presentation and associated worksheets. This lesson looks at the three limiting factors of photosynthesis, focusing on the graphs that they produce and ensures that students can explain why temperature is a factor.
This lesson begins by introducing the students to the definition of a limiting factor. They are challenged to recognise that it would be photosynthesis which is limited by carbon dioxide concentration and light intensity. The third factor, temperature, is not introduced until later in the lesson so that students are given thinking time to consider what it might be. Having been presented with two sets of data, students are asked to draw sketch graphs to represent the trend. The limiting factors on the light intensity graph are taught to the students so they can use this when working out the limiting factors on the carbon dioxide graph. The remainder of the lesson focuses on temperature and more specifically why a change in this factor would cause a change in the rate of photosynthesis because of enzymes. The student’s knowledge of that topic is tested alongside. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding.
All 4 of the lessons included in this bundle are highly-detailed to enable students to understand the sequence of events that occur during the body’s response to infection. Hours of planning have gone into the lesson PowerPoints and accompanying resources to ensure that the wide variety of tasks motivate and engage the students whilst challenging them to answer exam-style questions that cover the following specification points in topic 6.7 of the Edexcel A-level Biology B specification:
The mode of action of macrophages, neutrophils and lymphocytes
The development of the humoral immune response
The development of the cell-mediated response
The role of T and B memory cells in the secondary immune response
Immunity can be natural, artificial, active or passive
Vaccination can be used in the control of disease and the development of herd immunity
This can be a difficult topic for students to grasp, so time is taken to go over the key details to ensure that these are emphasised and retained