Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The importance of homeostasis (Edexcel GCSE Biology)
GJHeducationGJHeducation

The importance of homeostasis (Edexcel GCSE Biology)

(0)
This lesson has been designed to cover the content as detailed in points 7.9 & 7.10 (The importance of homeostasis) of the Edexcel GCSE Biology specification. Consisting of a detailed and engaging PowerPoint and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how a constant internal environment is maintained by homeostasis before being introduced to some of the factors which are regulated by these systems. Time is taken to look into osmoregulation and thermoregulation in more detail, so that students can explain that maintenance of the body temperature at the set-point allows enzymes to function at their maximum rate. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like SAY WHAT YOU SEE and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the Edexcel GCSE Biology specification but can be used with older students who need to recall the idea of homeostasis before taking it to greater depths in their studies.
The endocrine system (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

The endocrine system (Edexcel GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content set out in specification point 7.1 (The endocrine system) of topic 7 of the Edexcel GCSE Biology & Combined Science courses. A wide range of activities have been written into the lesson with the aim of engaging and motivating the students whilst ensuring that the content is covered in detail. These activities include a number of quiz competitions which will challenge the students to identify an endocrine organ when presented with three organs as well as introducing them to the names of some of the hormones released by the pituitary gland. The following content is covered in this lesson: Hormones as chemicals which have a slow but long lasting effect on target organs The location of the pituitary, adrenal and thyroid glands in the human body The location of the pancreas, ovaries and testes in the human body The hormones which are secreted by the endocrine glands The effects of the hormones on their target organs This lesson has been written for GCSE-aged students who are studying on the Edexcel courses but it is suitable for younger students who are looking at the different organ systems
Chromosomes and mitosis (WJEC GCSE Biology)
GJHeducationGJHeducation

Chromosomes and mitosis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover specification points 2.2 (a and b) about chromosomes and their role in mitosis as detailed in topic 2.2 (Cell division and stem cells) of the WJEC GCSE Biology specification. The wide range of activities will engage and motivate the students whilst ensuring that the content is covered in detail. In order for a deep understanding to be achieved, the other stages of the cell cycle (interphase and cytokinesis) are discussed so that students can recognise how th events that happen before and after this form of cell division results in genetically identical cells. A selection of summary questions will challenge the students on their understanding and ability to apply their knowledge to unfamiliar situations with questions about organisms other than humans. The lesson finishes by looking at the functions of mitosis in living organisms. This lesson has been designed for GCSE-aged students studying the WJEC GCSE Biology course but is also suitable for older students who are learning about mitosis and the cell cycle at A-level and need to go back over the key points
The causes and control of diabetes type I and II (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

The causes and control of diabetes type I and II (Edexcel GCSE Biology & Combined Science)

(0)
This is a fully-resourced lesson consisting of an engaging PowerPoint and differentiated worksheets which have been designed to cover the content of points 7.15 & 7.16 as detailed on the Edexcel GCSE Biology & Combined Science specifications. This point states that students should be able to describe the cause of diabetes type I and II and describe how they are both controlled. There are links made throughout the lesson between this topic and the control of blood glucose concentration from specification point 7,13 and 7.14 The lesson has been designed to take the format of a diabetic clinic where the students perform the duties of the attending doctor. They will move through the different expectations of the role which includes identifying symptoms, diagnosis of type I or II and communication with the patients to reveal the findings. The wide range of activities will enable the students to learn how to spot that someone is suffering from diabetes and the similarities and differences between the different types so they can determine which one is being presented. The summary tasks challenge the students to construct a letter to a patient who is suffering from type II and to identify the correct type from another doctor’s letter. Understanding and previous knowledge checks are interspersed with quiz competitions, like the one shown in the cover image, which make the learning fun and memorable and enable the students to assess their progress. This lesson has been designed for students studying the Edexcel GCSE Biology or Combined Science course but is suitable for both younger and older students who are focusing on this disease
Nerve impulses (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Nerve impulses (Pearson Edexcel A-level Biology)

(0)
This highly detailed and engaging lesson which explains how a nerve impulse (action potential) is conducted along an axon). The PowerPoint and accompanying resources have been designed to cover point 8.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to describe how the changes in the membrane permeability to sodium and potassium ions results in conduction. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes and saltatory conduction. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells.
Structure of a muscle fibre (Edexcel A-level Biology)
GJHeducationGJHeducation

Structure of a muscle fibre (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the detailed structure of a muscle fibre, and focuses on the proteins, bands and zones that are found in the myofibril. The engaging PowerPoint and acccompanying resource have been designed to cover point 7.10 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with an imaginary question from the quiz show POINTLESS, where students have to recognise a range of fields of study. This will reveal myology as the study of muscles so that key terms like myofibril, myofilament and myosin can be introduced. Students should have met these terms as well as actin when learning about the sliding filament theory in topic 7.2, so this acts as a recall. Moving forwards, students will be shown the striated appearance of this muscle so they can recognise that some areas appear dark where both myofilaments are found and others as light as they only contain actin or myosin. A quiz competition is used to introduce the A band, I band and H zone and students then have to use the information given to label a diagram of the myofibril. The final task challenges the students to use their knowledge of the sliding filament theory to recognise which of these bands or zones narrow or stay the same length when muscle is contracted.
Calculating CARDIAC OUTPUT (Edexcel A-level Biology)
GJHeducationGJHeducation

Calculating CARDIAC OUTPUT (Edexcel A-level Biology)

(0)
This clear and concise lesson looks at the calculation of cardiac output as the product of stroke volume and heart rate. This engaging PowerPoint and accompanying resource have both been designed to cover point 7.9 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to calculate cardiac output. The lesson begins by challenging the students to recall that the left ventricle is the heart chamber with the thickest myocardial wall. This leads into the introduction of stroke volume as the volume of blood which is pumped out of the left ventricle each heart beat. A quick quiz game is used to introduce a normative value for the stroke volume and students are encouraged to discuss whether males or females would have higher values and to explain why. A second edition of this quiz reveals a normative value for resting heart rate and this results into the introduction of the equation to calculate cardiac output. A series of questions are used to challenge their ability to apply this equation and percentage change is involved as well. The final part of the lesson looks at the hypertrophy of cardiac muscle and students will look at how this increase in the size of cardiac muscle affects the three factors and will be challenged to explain why with reference to the cardiac cycle that was covered in an earlier topic.
Glycolysis (CIE International A-level Biology)
GJHeducationGJHeducation

Glycolysis (CIE International A-level Biology)

(0)
This fully-resourced lesson looks at the details of glycolysis as the first stage of respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 12.2 (b) of the CIE International A-level Biology specification which states that students should know glycolysis as the phosphorylation of glucose and the subsequent splitting into triose phosphate which is then oxidised to pyruvate. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed.
Oxidative phosphorylation (CIE International A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (CIE International A-level Biology)

(0)
This clear and detailed lesson describes the process of oxidative phosphorylation, including the roles of the electron carriers, oxygen and the mitochondrial cristae. The PowerPoint has been designed to cover points 12.2 (f) and (g) of the CIE International A-level Biology specification and includes details of the electron transport system, the flow of protons and ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 detailed steps and at each point, key facts are discussed and explored in further detail to enable a deep understanding to be developed. Students will see how the proton gradient across the inner membrane is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP by oxidative phosphorylation. Understanding checks are included throughout the lesson to enable the students to assess their progress and prior knowledge checks allow them to recognise the clear links to other topics and modules. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and the Krebs cycle
Amino acids (AQA A-level Biology)
GJHeducationGJHeducation

Amino acids (AQA A-level Biology)

(1)
Amino acids are the monomers of polypeptides and this lesson describes their structure and makes links to related topics such as genes and dipeptides. The engaging PowerPoint has been designed to cover the first part of point 1.4.1 of the AQA A-level Biology specification and provides a clear introduction to the following lesson on the formation of dipeptides and polypeptides. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. The lesson concludes with one more quiz round called LINK TO THE FUTURE where the students will see the roles played by amino acids in the later part of the course such as translation and mineral ions.
The difference between monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology A)
GJHeducationGJHeducation

The difference between monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology A)

(0)
This engaging lesson acts as an introduction to carbohydrates and describes the differences between monosaccharides, disaccharides and polysaccharides. The PowerPoint and accompanying worksheet have been designed to cover the first part of points 1.12 & 1.13 of the Pearson Edexcel A-level Biology A specification and make clear links to the upcoming lessons in this sub-topic on these three main groups of carbohydrates. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen and starch are introduced as well as amylose and amylopectin as components of this latter polymer. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.
Starch and glycogen (Edexcel A-level Biology A)
GJHeducationGJHeducation

Starch and glycogen (Edexcel A-level Biology A)

(0)
This detailed and fully-resourced lesson describes the relationship between the structure and function of glycogen and starch. The engaging PowerPoint and accompanying resources have been designed to cover the fourth part of points 1.12 & 1.13 of the Pearson Edexcel A-level Biology A specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. The lesson begins with the CARBOHYDRATE WALL where students have to use their prior knowledge to collect the 9 carbohydrates on show into 3 groups. This results in glycogen, starch and cellulose being grouped together as polysaccharides and the structure and roles of the first two are covered over the course of the lesson. Students will learn how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also allows for spiralling. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses and they learn more about starch. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. The importance of the compact structure for storage is discussed as well as the branched chains of amylopectin acting as quick source of energy when it is needed. The lesson concludes with a question and answer section that guides the students when answering a question about the importance of the lower solubility of the polysaccharides when compared to the monosaccharides.
Synthesis of triglycerides (Edexcel A-level Biology A)
GJHeducationGJHeducation

Synthesis of triglycerides (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how triglycerides are formed during condensation reactions and compares saturated and unsaturated lipids. The engaging PowerPoint and accompanying worksheets have been designed to cover the points 1.14 (i) & (ii) of the Pearson Edexcel A-level Biology A specification and links are also made to related future topics such as the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from topics 1.12 & 1.13 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Structure of an amino acid (Edexcel A-level Biology A)
GJHeducationGJHeducation

Structure of an amino acid (Edexcel A-level Biology A)

(0)
This concise lesson describes the basic structure of an amino acid and introduces them as the monomers of polypeptides. The engaging PowerPoint has been designed to cover point 2.9 (i) of the Pearson Edexcel A-level Biology A specification and has been specifically written to lead into the next lesson on dipeptides and polypeptides. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide as detailed in specification point 2.8. Moving forwards, the students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. The lesson concludes with one more quiz round called LINK TO THE FUTURE where the students will see the roles played by amino acids in the later part of the course such as translation and dipeptides.
Polypeptides & protein structure (Edexcel A-level Biology A)
GJHeducationGJHeducation

Polypeptides & protein structure (Edexcel A-level Biology A)

(0)
This detailed lesson describes the formation of polypeptides as well as the different levels of protein structures and links this to function. Both the engaging PowerPoint and accompanying resources have been designed to cover points 2.9 (ii) & (iii) of the Pearson Edexcel A-level Biology A specification but also makes specific reference to genes and therefore covers the details of point 2.8 too. The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur. The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. The lesson concludes with one final task where the students have to identify three errors in a passage about the hydrolysis of a dipeptide or polypeptide.
Monomers, polymers, condensation & hydrolysis reactions (OCR A-level Biology)
GJHeducationGJHeducation

Monomers, polymers, condensation & hydrolysis reactions (OCR A-level Biology)

(0)
This lesson introduces the concept of monomers and polymers and emphasises the importance of condensation and hydrolysis reactions for biological molecules. The PowerPoint and accompanying worksheet have been designed to cover specification point 2.1.2 (b) of the OCR A-level Biology A course, and as this is likely to be one of the very first lessons that the students encounter, the range of engaging tasks have been specifically designed to increase the likelihood of the key points and fundamentals being retained. Monomers were previously met at GCSE and so the beginning of the lesson focuses on the recall of the meaning of this key term before the first in a series of quiz rounds is used to introduce nucleotides, amino acids and monosaccharides as a few of the examples that will be met in this topic. Dipeptides and disaccharides are introduced as structures containing 2 amino acids or sugars respectively and this is used to initiate a discussion about how monomers need to be linked together even more times to make the larger chains known as polymers. At this point in the lesson, the students are challenged to recall the definition of a condensation reaction from the previous lesson on water and are then challenged to identify where the molecule of water is eliminated from when two molecules of glucose join. A series of important prefixes and suffixes are then provided and students use these to remind themselves of the details of a hydrolysis reaction. Links to upcoming lessons are made throughout the PowerPoint to encourage students to begin to recognise the importance of making connections between topics.
Synthesis and breakdown of disaccharides (OCR A-level Biology)
GJHeducationGJHeducation

Synthesis and breakdown of disaccharides (OCR A-level Biology)

(0)
This lesson describes how disaccharides like maltose, sucrose and lactose are formed from the condensation of two monosaccharides and can also be broken down by hydrolysis reactions. The PowerPoint and accompanying question sheet have been designed to cover specification point 2.1.2 (e) of the OCR A-level Biology A specification but also makes repeated links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as extracellular enzymes, translocation in the phloem and the Lac Operon in cellular control. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge when presented with unfamiliar disaccharides
Glycosidic bonds & disaccharides (CIE International A-level Biology)
GJHeducationGJHeducation

Glycosidic bonds & disaccharides (CIE International A-level Biology)

(0)
This lesson describes the synthesis and breakdown of disaccharides by the formation or breakage of glycosidic bonds during condensation and hydrolysis reactions. The PowerPoint and accompanying question sheet have been designed to cover specification points 2.2 © & (d) of the CIE International A-level Biology course and also considers how these glycosidic bonds have to be broken in the non-reducing sugar test The first section of the lesson focuses on a prefix and a suffix so that the students can recall that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge of the structure of alpha glucose and then guided to draw maltose. Students are then given the opportunity to study the displayed formula of galactose, fructose, deoxyribose and ribose before being shown sucrose and lactose and being challenged to recognise the monosaccharides involved in the synthesis of each one. Time is taken to demonstrate how their knowledge of these disaccharides will be important in later topics such as extracellular enzymes, translocation in the phloem and the Lac Operon in the control of gene expression. The next task involves two exam-style questions where students have to demonstrate and apply their newly acquired knowledge by answering questions about two unfamiliar disaccharides. The final section of the lesson looks at the test for a non-reducing sugar like sucrose and the need to begin with the breaking of the glycosidic bond to “free up” the reducing sugars
Starch, glycogen & cellulose (CIE International A-level Biology)
GJHeducationGJHeducation

Starch, glycogen & cellulose (CIE International A-level Biology)

(0)
This detailed and fully-resourced lesson describes the relationship between the structure, properties and functions of glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover specification point 2.2 (e) of the CIE International A-level Biology course and continual links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. The lesson begins with the CARBOHYDRATE WALL where students have to use their prior knowledge to collect the 9 carbohydrates on show into 3 groups. This results in glycogen, starch and cellulose being grouped together as polysaccharides and the structure, properties and functions of these large carbohydrates are covered over the course of the lesson. Students will learn how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also dictate whether the chain spirals or not. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses and they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. The importance of the compact structure for storage is discussed as well as the branched chains of amylopectin acting as quick source of energy when it is needed. In the final part of the lesson, time is taken to focus on the hydrogen bonds between rotated glucose molecules on the same chain and between different chains and to explain how the formation of cellulose microfibrils and macrofibrils provides plant cells with the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
Amino acids & peptide bonds (CIE A-level Biology)
GJHeducationGJHeducation

Amino acids & peptide bonds (CIE A-level Biology)

(0)
This lesson describes the structure of an amino acid and the formation and breakage of a peptide bond. The PowerPoint has been designed to cover specification point 2.3 (a) of the CIE International A-level Biology course and provides a clear introduction to the following lesson on the formation of dipeptides and polypeptides. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference. Students will be introduced to the existence of hydrophobic and hydrophilic R groups so that they are able to apply this knowledge in future lessons where structure and shape is considered. Some time is also given to look at cysteine in greater detail due to the presence of sulfur atoms and once again a link is made to disulfide bridges for upcoming lessons. Another quiz round called LINK TO THE FUTURE will allow the students to recognise the roles performed by amino acids in the later part of the course such as translation and in the formation of dipeptides. The lesson concludes with a task that describes the breakage of the peptide bonds during hydrolysis reactions.