Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Principles of the PCR (OCR A-level Biology A)
GJHeducationGJHeducation

Principles of the PCR (OCR A-level Biology A)

(0)
This lesson explains the principles of the polymerase chain reaction (PCR) and the PowerPoint has been designed to cover point 6.1.3 (d) of the OCR A-level Biology A specification A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss the possible identity of the enzyme involved and to recall the action of this enzyme. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so the next part of this lesson focuses on each temperature and specifically the reasons behind the choice. Time is taken to examine the key points in detail, such as why Taq polymerase has to be used as it is not denatured at the high temperature as well as the involvement of the primers. This process is closely linked to other techniques like electrophoresis which is covered in a later lesson and ties are continuously made throughout the lesson This process is mentioned in other uploaded lessons in this module such as electrophoresis and genetic engineering to allow students to understand how it is critical for DNA analysis
Work done and POWER
GJHeducationGJHeducation

Work done and POWER

(0)
A fast paced lesson which focuses on the equation for work done and using this in calculations. The lesson includes a student-led lesson presentation and a question worksheet which together explore the different problems that students can encounter when attempting these questions and therefore acts to eliminate any errors. There is a big mathematical element to the lesson which includes the need to rearrange formula, understand standard form and to convert between units as this is a common task in the latest exams. Students will learn that some questions involve the use of two equations as they are needed to move from a mass to a force (weight) before applying the work done equation. The last part of the lesson looks at how work done is involved in the calculation for power. This lesson has been designed for GCSE students.
Sound waves
GJHeducationGJHeducation

Sound waves

(0)
An engaging lesson presentation that looks at how the amplitude and frequency of a sound wave can change. The lesson uses a range of sounds from recordings and challenges the students to draw the sound waves that would have been produced. In order to understand this topic, it is essential that the key terminology is understood and can be used in the correct context. Therefore, the start of the lesson focuses on wavelength and frequency and then longitudinal and challenges the students to recognise that these could all be related to sound waves. Moving forwards, students will hear a recording and then read a music “critique” that uses the key terminology so that can link the sounds to the change in shape of the waves. The final part of the lesson involves them drawing how the different sound waves would change from the control one. This lesson has been designed for GCSE students.
Temperature & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Temperature & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains the effect of an increasing temperature on the rate of an enzyme-catalysed reaction. The PowerPoint and the accompanying resource are part of the 1st lesson in a series of 4 which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification and this lesson has been specifically planned to tie in with the lesson in 3.1 where the properties of enzymes and their mechanism of action were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in topics 19 and 13. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of reaction and not the practical skills that would be covered in a core practical lesson
Movement of the body (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Movement of the body (Edexcel Int. A-level Biology)

(0)
This lesson describes how an interaction of muscles, tendons, the skeleton and ligaments is needed for movement of the human body. The PowerPoint and accompanying resources have been designed to cover point 7.9 of the Edexcel International A-level Biology specification and also includes descriptions of antagonistic muscle pairs, extensors and flexors. At the start of the lesson, the prep room skeleton is used as the example to show that bones without muscles are bones that are unable to move (unaided). Moving forwards, the students will learn that skeletal muscles are attached to bones by bundles of collagen fibres known as tendons and as they covered the relationship between the structure and function of collagen in topic 2, a task is used that challenges their recall of these details. This will allow them to recognise that the ability of this fibrous protein to withstand tension is important for the transmission of the force from the muscle to pull on the moveable bone. A series of quick quiz competitions introduce the key terms of flexion and antagonistic and then an exam-style question challenges them to recognise the structures involved in extension at the elbow. The remainder of the lesson focuses on the role of ligaments and one final example of extension at the knee joint will demonstrate how the interaction of all of the structures met over the course of the lesson is needed for movement
Edexcel GCSE Combined Science Topic P15 REVISION (Forces and matter)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P15 REVISION (Forces and matter)

(0)
This is a concise REVISION lesson that contains an engaging powerpoint (28 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P15 (Forces and matter) of the Edexcel GCSE Combined Science specification. The following sub-topics in the specification are covered in this lesson: Describe the difference between elastic and inelastic distortion Recall and use the equation for linear elastic distortion including calculating the spring constant Use the equation to calculate the work done in stretching a spring Describe the difference between linear and non-linear relationships between force and extension Investigate the extension and work done when applying forces to a spring This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
Link reaction (CIE International A-level Biology)
GJHeducationGJHeducation

Link reaction (CIE International A-level Biology)

(0)
This clear and concise lesson looks at the role of the link reaction in the conversion of pyruvate to acetyl coenzyme A which will then enter the Krebs cycle. The PowerPoint has been designed to cover point 12.2 © of the CIE International A-level Biology specification which states that students should be able to explain that this conversion occurs in the matrix when oxygen is present The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.
Bohr shift (AQA A-level PE)
GJHeducationGJHeducation

Bohr shift (AQA A-level PE)

(0)
This fully-resourced lesson explains how a shift of the oxyhaemoglobin dissociation curve is a beneficial phenomenon for exercising individuals. Both the detailed PowerPoint and accompanying resources have been designed to cover the 2nd part of the transportation of oxygen section as detailed in the Applied Anatomy and physiology unit of the AQA A-level PE specification. The previous lesson introduced the transportation of oxygen by haemoglobin and the oxyhaemoglobin dissociation curve so this lesson has been written to build on that knowledge and this is immediately checked at the start of the lesson by getting the students to recall key terms as well as the shape of the curve. A quick quiz competition, called SPORTS SCIENCE, is used to challenge their knowledge of the names of famous sports people to identify the surname of the scientist, Christian Bohr. They are told that this effect describes how an increase in the concentration of a substance affects the dissociation curve and are encouraged to predict what this substance might be. By shifting the curve to the right, students will learn that the affinity of haemoglobin is reduced. The curve is used to show how the saturation of haemoglobin is less at low partial pressures of oxygen when there is increased carbon dioxide concentration before they are challenged to summarise the effect on the dissociation before applying all of their knowledge to a final sporting situation. The final task has been differentiated 2 ways so that students of differing abilities are able to access the work
Calculating actual size (CIE A-level Biology)
GJHeducationGJHeducation

Calculating actual size (CIE A-level Biology)

(0)
This lesson describes how to use the magnification formula to calculate the actual sizes of specimens in a range of units. The PowerPoint and accompanying resources have been designed to cover point 1.1 (e) of the CIE A-level Biology specification but can also be used as a revision tool on the content of the previous two lessons as prior knowledge checks are included along with current understanding checks. The students are likely to have met the magnification formula at iGCSE so this lesson has been written to build on that knowledge and to support them with more difficult questions when they have to calculate actual size without directly being given the magnification. A step by step guide is used to walk the students through the methodology and useful tips are provided. The final quiz round of the competition that has run over the course of these 3 lessons will challenge them to convert between units so they are confident when challenged to present actual size in millimetres, micrometres or nanometres.
Active transport (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Active transport (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the movement of molecules by active transport, endocytosis and exocytosis. The PowerPoint and accompanying worksheets have been designed to cover the second part of specification points 2.5 (i) & (ii) of the Edexcel International A-level Biology specification and describes the role of ATP as an immediate source of energy as well as the role of the carrier proteins. ATP is introduced at the start of the lesson and students will learn that this molecule is a phosphorylated nucleotide so they are able to make appropriate links when they cover the structure of DNA and RNA later in topic 2. Students will learn that adenosine triphosphate is the universal energy currency and that the hydrolysis of this molecule can be coupled to energy-requiring reactions within the cell and the rest of the lesson focuses on the use of this energy input for active transport, endocytosis and exocytosis. Students are challenged to answer a series of questions which compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The lesson concludes with a link to a future topic as the students are shown how exocytosis is involved in a synapse.
Disaccharides (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Disaccharides (Edexcel Int. A-level Biology)

(0)
This lesson describes how monosaccharides are joined together during condensation reactions to form maltose, sucrose and lactose. The PowerPoint and accompanying resource have been designed to cover the third part of point 1.2 & 1.4 of the Edexcel International A-level Biology specification but also make links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as digestion, translocation in the phloem and the Lac Operon in the control of gene expression. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge and the mark schemes are included within the lesson PowerPoint so students can assess their understanding and address any misconceptions if they have arisen.
OCR Gateway A GCSE Chemistry C1 (Particles) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Chemistry C1 (Particles) REVISION

(0)
An engaging lesson presentation (44 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module C1 (Particles) of the OCR Gateway A GCSE Chemistry specification. The topics that are tested within the lesson include: Introducing particles Chemical and physical changes Atomic structure Isotopes Developing the atomic model Students will be engaged through the numerous activities including quiz rounds like “Order, Order” whilst crucially being able to recognise those areas which need further attention
Structure of sensory and motor neurones (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of sensory and motor neurones (CIE International A-level Biology)

(0)
This is a fully-resourced lesson which covers the detail of specification point 15.1 (b) of the CIE International A-level Biology specification which states that students should be able to describe the structure of a sensory and a motor neurone. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath that is present in both neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained and the lesson concludes with the introduction of the different types of motor neurones based on the type of muscle which they innervate. This lesson has been designed for students studying on the CIE International A-level Biology course and ties in well with the other uploaded lessons which cover the content of topic 15.1 (Control and coordination in mammals) .
The structure of the KIDNEY (CIE International A-level Biology A)
GJHeducationGJHeducation

The structure of the KIDNEY (CIE International A-level Biology A)

(0)
This detailed lesson has been planned to cover the content of specification point 14.1 (e) of the CIE International A-level Biology specification which states that students should be able to describe the gross structure of the kidney and the detailed structure of the nephron. The lesson was designed at the same time as the other lessons in this topic on ultrafiltration, selective reabsorption and osmoregulation so that a common theme runs throughout and students can build their knowledge up gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. This lesson has been designed for students studying on the CIE International A-level Biology course
Thermoregulation (Edexcel A-level Biology A)
GJHeducationGJHeducation

Thermoregulation (Edexcel A-level Biology A)

(0)
This lesson describes the role of the hypothalamus and the mechanisms of thermoregulation that maintain the body in dynamic equilibrium during exercise. The PowerPoint has been designed to cover point 7.12 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. Students were introduced to homeostasis at GCSE and this lesson has been written to build on that knowledge and to add the key detail needed at this level. Focusing on the three main parts of a homeostatic control system, the students will learn about the role of the internal and peripheral thermoreceptors, the thermoregulatory centre in the hypothalamus and the range of effectors which bring about the responses to restore optimum levels. The following responses are covered in this lesson: Vasodilation Increased sweating Body hairs In each case, time is taken to challenge students on their ability to make links to related topics such as the arterioles involved in the redistribution of blood and the high specific latent heat of vaporisation of water.
Formation of ions (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Formation of ions (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson describes an ion as an atom with a positive or negative charge, and explains how cations and anions are formed in ionic compounds. The lesson PowerPoint and accompanying worksheet have been designed to cover points 1.22 - 1.24 of the Edexcel GCSE Chemistry specification and also covers the same points on the Combined Science course. The first part of the lesson focuses on atoms and specifically on getting students to recall that they contain the same number of protons and electrons and this is why they have no overall charge. By ensuring that they are confident with this fact, they will be able to understand why ions have a charge. Students will learn that ions have full outer shells of electrons and this change in the number of this sub-atomic particle leads to the charge. They are shown examples with aluminium and oxide ions and then are challenged to apply this new-found knowledge to a task where they have to explain how group 1, 2, 5 and 7 atoms become ions. The final part of the lesson looks at how ion knowledge can be assessed in a question as they have to recognise the electron configuration of one and describe how many sub-atomic particles are found in different examples. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but could be used with higher ability KS3 students who are looking to extend their knowledge past basic atomic structure
Mendeleev and the Periodic Table
GJHeducationGJHeducation

Mendeleev and the Periodic Table

(0)
This is a concise lesson that looks at Dmitri Mendeleev’s periodic table, the changes and tweaks that he made and compares it against the modern day version of the table. The aim of the lesson is to show students how accurate Mendeleev was with his table, even with those elements that had not yet been discovered. They will work through some examples with eka-silicon and eka-manganese and also compare eka-aluminium’s predictions against those of gallium. Links are made to the development of the atom so students can understand how the atomic number was used by Mendeleev and how it is used now. Students are set homework to look at the developments that were made by other scientists as homework and this is not covered in this lesson.
Concentration & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Concentration & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This fully-resourced lesson describes the effects of enzyme and substrate concentration on the rate of enzyme-catalysed reactions. The PowerPoint and accompanying resources are the third in a series of 4 lessons which cover the details of point 3.2 (a) of the CIE A-level Biology specification. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is attained and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will come to recognise that this availability is the result of enzyme synthesis and enzyme degradation and a series of tasks will introduce the details of transcription and translation and therefore prepare them for the lessons in topic 6. Please note that this lesson explains the Biology behind the effect of concentration on enzyme-catalysed reactions and not the methodology involved in carrying out such an investigation as this is covered in a core practical lesson.
Equations of motion
GJHeducationGJHeducation

Equations of motion

(0)
A concise lesson presentation (22 slides) and question worksheet, which together focus on the challenge of applying the equations of motion to calculation questions. Students are given this equation on the data sheet in the exam - therefore, this lesson shows them how they will be expected to rearrange in it four ways. For this reason, the start of the lesson revisits the skills involved in rearranging the formula, beginning with simple tasks and building up to those that involve indices as are found in this equation. Once students have practised these skills, they are challenged to answer 4 questions, although 1 is done together with the class to visualise how to set out the working. This lesson has been designed for GCSE students
Substrate & enzyme concentration & enzyme activity (Edexcel A-level Biology B)
GJHeducationGJHeducation

Substrate & enzyme concentration & enzyme activity (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how enzyme and substrate concentration affect the rate of enzyme activity. The PowerPoint and accompanying resources are the last in a series of 3 lessons which cover the detail of point 1.5 (iv) of the Edexcel A-level Biology B specification. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is achieved and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will come to recognise that this availability is the result of enzyme synthesis and enzyme degradation and their recall of transcription and translation is tested through a SPOT the ERRORs task. Please note that this lesson explains the Biology behind the effect of concentration on enzyme-controlled reactions and not the methodology involved in carrying out such an investigation as this is covered in a core practical lesson.