Hero image

MathsWorksheetMaster's Shop

Average Rating4.55
(based on 232 reviews)

All my resources have been created to use with classes I teach. Often I've created resources because, for a particular topic, I haven't been happy with the number/standard of the examples in a textbook. Sometimes I've created worksheets for certain topics (e.g. graph transformations) because I feel my classes will make greater progress on a printed worksheet than trying to work from a textbook. I always aim to produce high-quality resources that improve the students' learning and understanding.

253Uploads

458k+Views

400k+Downloads

All my resources have been created to use with classes I teach. Often I've created resources because, for a particular topic, I haven't been happy with the number/standard of the examples in a textbook. Sometimes I've created worksheets for certain topics (e.g. graph transformations) because I feel my classes will make greater progress on a printed worksheet than trying to work from a textbook. I always aim to produce high-quality resources that improve the students' learning and understanding.
Converting mixed numbers and improper fractions
MathsWorksheetMasterMathsWorksheetMaster

Converting mixed numbers and improper fractions

(1)
This worksheet is designed so that students will hopefully gain an understanding of the process of converting mixed numbers and improper fractions, without having to write down a series of steps or instructions to follow. For both conversions the first set of questions are scaffolded, then for later questions the scaffolding is removed so they are doing the whole conversion themselves. There are 20 conversions in both directions, worked solutions are provided.
Finding roots and real factors of z^n+k=0
MathsWorksheetMasterMathsWorksheetMaster

Finding roots and real factors of z^n+k=0

(0)
The first resource guides your class through the process of using the real and complex roots of z^n+k=0 to write down its real factors. The introduction includes the important result about the sum of conjugates and then uses equations of the form z^n=1 or z^n=-1 to establish that there is always an even number of complex roots, which can be put into conjugate pairs. It is then shown how each conjugate pair of roots produces a real quadratic factor, while each real root produces a real linear factor. To practise all this there is an exercise with 7 questions for students to complete. Solutions to all the examples and the exercise are included. The second resource contains an exercise with further examination-style questions on this topic. This could be used as additional practice in class or as a homework/test. Answers are provided.
Calculations with fractions (all 4 operations)
MathsWorksheetMasterMathsWorksheetMaster

Calculations with fractions (all 4 operations)

(0)
These are two 2-sided worksheets that cover all calculations with fractions. The adding/subtracting worksheet goes step-by-step through the process of making the denominators equal prior to the calculation. The first exercise (12 questions) involves adding/subtracting fractions and mixed numbers where the denominators match, the second exercise (34 questions) involves adding/subtracting fractions and mixed numbers where the denominators do not match. The multiplying/dividing worksheet begins with a reminder of the method, together with a few examples to work through as a group. There are then two exercises, each with 20 questions, first to practise multiplying and then to practise dividing fractions and mixed numbers. Fully worked solutions to all questions are provided.
Basic percentages questions
MathsWorksheetMasterMathsWorksheetMaster

Basic percentages questions

(0)
These 3 resources cover the following types of percentage question: 1. Writing one quantity as a % of another 2. Finding a % of a quantity 3. Increase/decrease by a % 4. Finding the % change Each resource is split into a non-calculator section and a calculator section. Each section has an introduction where the method(s) is/are explained with some examples to illustrate, followed by an exercise for students to complete. In total there are over 150 questions for students to work through - all solutions are provided.
Complex numbers - polar form, calculations and geometrical applications
MathsWorksheetMasterMathsWorksheetMaster

Complex numbers - polar form, calculations and geometrical applications

(0)
The first resource introduces the technique for writing a complex number z=a+bi in (trigonometric) polar form, r(cos (theta)+ i sin(theta)), there are few examples of converting from one form into the other (to do as a class), and then an exercise of 30 questions for students to do. The next section introduces the exponential polar form re^(i theta), a few examples of converting from one form into the other (to do as a class), and then an exercise of questions for students to do. The exercise includes questions that get students to consider what z* and -z look like in both polar forms, as well as investigating multiplying and dividing complex numbers in polar form. Answers to the exercises are included. The second resource begins with a reminder of how to multiply/divide complex numbers in polar form, followed by an exercise of questions to practise. The remaining 3 pages cover the geometrical effect of multiplying, with several examples for students to learn from. Fully worked solutions are included. The final resource focuses on examination-style questions that consider the geometric effect of multiplying by a complex number in polar form. Fully worked solutions are included.
Statistical diagrams and calculations (new A level) teaching notes, examples, exercises & a homework
MathsWorksheetMasterMathsWorksheetMaster

Statistical diagrams and calculations (new A level) teaching notes, examples, exercises & a homework

(0)
This 26-page resource covers all the required knowledge for diagrams and calculations to summarise or represent data in the new A level. In every section it contains examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included). The sections are: 1. Bar charts and pie charts - revision of interpreting these simple diagrams 2. Averages of a list of data 3. Range and interquartile range of a list of data 4. Histograms - drawing them, interpreting them and using them for probability 5. Cumulative frequency - using the diagram to find median, IQR, percentiles etc 6. Box-and-whisker plots - interpretation and use to compare 2 sets of data 7. Standard deviation - calculation from a list of data or summary statistics 8. Frequency tables - finding averages/measures of spread from (grouped) frequency tables 9. Scatter diagrams and correlation - interpretation of diagram, PMCC, use of line of best fit 10. Outliers - investigating presence of outliers in a list/table of data or a diagram Also provided is an 8-page resource which contains lots of practice of problems that involve finding the variance or standard deviation of different sets of data (answers are included). This projectable and printable resource will save you having to draw any tables/diagrams when teaching the topic and will make things easier for your students as they can just work directly on the provided tables and axes, as well as drawing on the provided diagrams to help interpret them. Also included is a homework/test that covers the whole topic - fully worked solutions are provided. Here is an example of one of my A level resources that is freely available: https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
3 tests on proof, quadratics and using graphs (new A level)
MathsWorksheetMasterMathsWorksheetMaster

3 tests on proof, quadratics and using graphs (new A level)

(0)
I'm teaching 3 different year 12 classes this year so I created 3 slightly different tests for the work I've covered with each. The first test focuses on quadratics (1 question on disproof by counterexample), the second and third both focus on quadratics and using graphs (also with 1 question on disproof by counterexample). All tests come with fully-worked solutions and they can be amended to your requirements.
Polar coordinates - teaching notes and examples
MathsWorksheetMasterMathsWorksheetMaster

Polar coordinates - teaching notes and examples

(1)
This resource can be used to teach your students all the required knowledge for the topic of polar coordinates (FP2) and contains examples to work through with your students. As the resource can be projected/printed it saves you time and allows your class to focus on understanding the techniques and attempting questions. The resource is split into six sections: 1. Defining points in polar coordinates and sketching curves 2. Tangents at the pole 3. Lines of symmetry 4. Maximum value of r 5. Converting between cartesian and polar form 6. Finding areas Note that this resource does not contain the answers to the examples - sorry! If I get time I will add them, or if you download and use this resource and send me your solutions I will add them in, crediting you of course.
Homework or test on fractions and percentages
MathsWorksheetMasterMathsWorksheetMaster

Homework or test on fractions and percentages

(0)
This assessment has a non-calculator section and a calculator section. it covers the following skills: 1. Writing one quantity as a fraction/percentage of another 2. Converting mixed numbers and improper fractions 3. All four calculations with fractions 4. Finding a fraction/percentage of a quantity 5. Percentage increase/decrease 6. Finding the percentage change Fully worked solutions are included.
Vectors - perpendicular from a point to a line
MathsWorksheetMasterMathsWorksheetMaster

Vectors - perpendicular from a point to a line

(0)
This worksheet focuses on the skill of being able to find the point of intersection of the perpendicular from a point to a line. It includes related questions such as the perpendicular distance from a point to a line and the coordinates of the reflection of a point in a line. Some of the lines are given in vector form and some are in cartesian form, so students need to be confident with both. There are 16 questions in total, all answers are provided.
Equation of a straight line - 15 resources to teach, practice, revise and assess this topic
MathsWorksheetMasterMathsWorksheetMaster

Equation of a straight line - 15 resources to teach, practice, revise and assess this topic

(0)
I think this set of resources covers everything your classes need to learn and practice on straight line graphs (up to GCSE level). All the resources are suitable to be projected or printed for students to work on, saving a lot of time for drawing graphs and allowing them to annotate or work on diagrams. All resources come with solutions included. Here is a brief description of each resource: 1. Basic straight lines - lines of the form x=a, y=a and y=x or y=-x 2. Drawing straight lines - 10 questions using the equation of a line y=mx+c to complete a table of values and draw the graph. 3. Cover-up method - 12 questions to practise drawing lines of the form ax+by=c 4. Using the equation - test if a point lies on a line, determine y-coord given x-coord and vice versa (70 questions) 5. Finding the gradient - 18 questions to practise finding gradients, including where the scales on the axes are not the same 6. Matching y=mx+c to the graph - they find the gradient and y-intercept for each given graph and equation, learning the connection between the equation and properties of the graph 7. Equation to gradient and y-intercept - simple worksheet to practice writing down the gradient and coordinates of y-intercept from the equation, and vice versa (24 questions) 8. Finding the equation of a line - 24 questions to practise finding the equation of the line from its graph, including where the scales on the axes are not the same 9. Finding equation using point and gradient - 10 questions to practise doing this with a grid as an aid, then 26 questions without a grid 10. Pairs of lines - 4 graphs, each with a pair of parallel or perpendicular lines. By finding the equation of each line the students should start to see the rules for gradients of parallel and perpendicular lines 11. Parallel and perpendicular lines - almost 50 questions finding the equation of a line parallel / perp to a given line that passes through (0,b) or (a, b) 12. Using two points A and B - find midpoint M of AB, gradient of line through A and B, equation of line through A and B, equation of line perp. to AB through A, B or M. 10 questions to learn the methods with grids as an aid, then an exercise for each style of question (over 50 questions in total). 13. Multiple choice questions - quick assessment covering most of the topic 14. Straight lines revision - 60 questions to revise the whole topic 15. Homework - 19 questions on all aspects of the topic, fully works solutions included I have just worked through all these with my year 10 group and it took around 5 hours of lesson time to complete. A more able group may need less time but you have enough resources here to keep your classes busy for a number of lessons.
de Moivre's theorem and roots of polynomials - teaching notes and examples
MathsWorksheetMasterMathsWorksheetMaster

de Moivre's theorem and roots of polynomials - teaching notes and examples

(1)
This worksheet can be used to introduce de Moivre's theorem to your class and show how it can be used to find multiple angle formulae (e.g. sin 4theta = ...) and how these formulae help us to relate trigonometric equations to polynomial equations. The introduction shows how we can arrive at 2 different results for (c + is)^n by using de Moivre's theorem and a binomial expansion. There are then 3 examples of using this technique to derive multiple angle formulae. The second section focuses on relating trigonometric equations to polynomial equations and how this allows us to find exact values of trigonometric functions or to express the roots of a polynomial in trigonometric form. There are 3 examples to illustrate this, the first one is deliberately straightforward to help students see the connection between the trigonometric work and the polynomial equation. The solutions version of the worksheet has fully-worked solutions to all the examples and the notes in the introduction section are also completed. Once you have worked through this worksheet with your students they should be able to attempt an exercise of questions on their own.
Basic diagrams and averages worksheet / homework / test
MathsWorksheetMasterMathsWorksheetMaster

Basic diagrams and averages worksheet / homework / test

(0)
I used this resource as a homework with my Year 10 group after finishing work on statistical diagrams and the calculation of averages and the range. It has at least one question on each of the following: 1. Bar charts 2. Pie charts 3. Mode, median, mean and range from a list of data 4. Finding the missing value in a set of data given the mode/median/mean. 5. Finding the new mean after a data point is added/removed. 6. Finding averages from a frequency table and a grouped frequency table. Fully-worked solutions are provided.
Applications of differentiation (new A level) - notes, examples, exercises and a homework/test
MathsWorksheetMasterMathsWorksheetMaster

Applications of differentiation (new A level) - notes, examples, exercises and a homework/test

(0)
This 18-page resource covers all the uses/applications of differentiation as required for the new A level. In every section it contains examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included). The sections are: 1. Tangents and normals - finding the equations of tangents/normals to curves 2. Stationary points - finding them and determining their nature using first or second derivative 3. Smallest and largest values of a function - finding min&max value of f(x) in a set of values for x 4. Practical problems - using differentiation to find optimal solution to a problem in context This projectable and printable resource will save you having to write out or create any notes/examples when teaching this topic. It also increases how much you can get through in lessons as students don’t have to copy notes/questions and can work directly onto spaces provided for solutions. You could also email/print some or all of this for students who have missed lessons or need additional notes/practice/revision. Also included is a 2-page assessment that can be used as a homework or test. Fully worked solutions to this assessment are provided. Here is an example of one of my A level resources that is freely available: https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
Exponential models (new A level maths) - homework/test
MathsWorksheetMasterMathsWorksheetMaster

Exponential models (new A level maths) - homework/test

(0)
This assessment covers all aspects of the exponential models topics for all examination boards. It contains 20 questions, ranging from simple multiple-choice questions that would be worth 1 mark, to demanding multi-stage problems typical of specimen examination questions. An answer sheet is provided for students to work on (with axes provided for questions that require graph work). Fully-worked solutions are included.
Logarithms (new A level maths)
MathsWorksheetMasterMathsWorksheetMaster

Logarithms (new A level maths)

(0)
This 30-page resource covers all the required knowledge and techniques for logarithms, as required for the new A level. In every section it contains notes, explanations and examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included). The sections are: 1.Writing and evaluating logarithms 2.Using base 10 and base e 3.Evaluating logarithms on a calculator 4.Logarithms as the inverse of raising to a power 5.Solving equations that involve logarithms 6.Laws of logarithms 7.Solving equations with an unknown power 8.Disguised quadratic equations In all there are over 300 questions in the various exercises for your students to work through. This projectable and printable resource will save you having to create or write out any notes/examples when teaching the topic, and will make things easier for your students as they can just work directly on the given spaces provided for solutions. Answers to all exercises are included. Also included is a 16-question assessment that can be used as a homework or a test. Fully worked solutions are provided. Here is an example of one of my A level resources that is freely available: https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
Reciprocal of integer, fraction, decimal
MathsWorksheetMasterMathsWorksheetMaster

Reciprocal of integer, fraction, decimal

(6)
This worksheet will give your class a bit of practice of finding the reciprocal of different types of numbers. Each section starts with an explanation and/or examples, followed by a short exercise of questions for students to complete. The sections are: Reciprocal of an integer Reciprocal of a fraction of the form 1/n Reciprocal of a fraction of the form a/b (includes conversion of mixed fractions to improper) Reciprocal of a decimal (requires conversion of decimal to fraction) The answers to the questions in the exercises are included.
Newton Raphson method (new A level maths)
MathsWorksheetMasterMathsWorksheetMaster

Newton Raphson method (new A level maths)

(0)
This 19-page resource covers all the required knowledge and techniques for using the Newton Raphson method to find roots of an equation, as required for the new A level. In each section it contains notes, explanations and examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included). Also included is multiple-choice assessment that can be used as a plenary or brief homework. The sections/topics are: 1.Introduction to the method (a) the iterative formula and a graphical interpretation of the process (b) using the method to find successive approximations or an estimate of a root © different ways in which the formula may be written © illustrating the method on a diagram 2.Conditions where the Newton Raphson method fails (a) what happens if an approximation occurs at a stationary point of f(x) (b) situations where successive approximations converge to a different root © situations where successive approximations do not converge to a root (d) what happens if an approximation is outside the domain of f(x) This projectable and printable resource will save you having to create or write out any notes/examples when teaching the topic, and will make things easier for your students as they can just work directly on the given spaces provided for solutions. The exercises contains 35 questions for your students to complete. Answers to all exercises are included. Here is an example of one of my A level resources that is freely available: https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186