Hero image

Nteach's Shop

Average Rating4.73
(based on 339 reviews)

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.

158Uploads

360k+Views

312k+Downloads

I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
GCSE Physics P1 - Electromagnetic Spectrum
NteachNteach

GCSE Physics P1 - Electromagnetic Spectrum

(6)
Complete lesson on Electromagnetic Spectrum/Uses/Risks with key content from AQA Physics. This lesson covers the electromagnetic spectrum, waves uses, wave risk, order and size of waves and mobile risks. Starter uses a fun riddle challenge which pupils enjoyed doing in Generating Electricity and so asked for another. The lesson explores the spectrum by order of identities of waves, wavelength, frequency and energy. A quick task on multipliers, standard form and prefixes helps pupils understand the notation commonly seen on the EM spectrum and also as questioned in exams. A task gets pupils to explore different EM waves using information sheet for them to use to summarise key information. Then mobile phone risk is then discussed along with correlation and causation. Plenary quick quiz and some exam style questions which can be used as mini plenaries to link to exams. More lessons in same format for P1. https://www.tes.com/member/Nteach
GCSE 9-1 AQA Physics 4.5 - Forces and Pressure (unit)
NteachNteach

GCSE 9-1 AQA Physics 4.5 - Forces and Pressure (unit)

4 Resources
4 lessons covering the unit of Forces and Pressure for AQA GCSE Physics. Lesson include: Pressure and Surfaces Pressure and Liquids Atmospheric Pressure Upthrust and Flotation Please read individual resources descriptions for each item in the bundle for further detail.
GCSE Physics P2 - Electrical Power (E=Pt & P=IV)
NteachNteach

GCSE Physics P2 - Electrical Power (E=Pt & P=IV)

(1)
A completely resourced lesson on GCSE Physics P2 - Electrical Power (E=Pt & P=IV) including key content from AQA exam specification. Starter focuses on units and what they measure as a nice recap of all P2 units of measure. Power and a key definition is provided is reviewed through relatable examples and then put into the context of electrical devices. Examples of calculating power from energy used and time are provided with a worksheet for this. Activity included for power rating circus is optional as alternatively another worksheet is provided allowing the exercise to be completed without a power rating circus. Energy is then related to current and potential difference with the key equations and exercised with a worksheet. Finally questions to identify appropriate fuse ratings for electrical devices. More P2 lessons to come.
GCSE 9-1 AQA Physics 4.4 NEW SPEC - Nuclear Physics Unit
NteachNteach

GCSE 9-1 AQA Physics 4.4 NEW SPEC - Nuclear Physics Unit

8 Resources
A bundle of resources aimed at the new GCSE AQA specification Nuclear Physics Unit. Lessons included: - Introduction to Atoms & Nuclear Radiation -Atomic Model, Plum pudding and Bohr’s model of the atom. -Atoms and Radiation. - Alpha, Beta and Gamma radiation. - Radioactivity and Half-life. - Nuclear Radiation Uses (Medicine). - Nuclear Fission. - Nuclear Fusion. Additional lesson to be added on ‘the discovery of nuclear radiation.’
GCSE AQA Physics - Centre of Mass
NteachNteach

GCSE AQA Physics - Centre of Mass

(2)
New GCSE AQA Physics lesson on ' Centre of Mass' written in line with new AQA Physics specification. All questions provided with answers within power point. Starter simply looks at balancing object on one finger and how intuitively we can know how to do this. Then stability of different shapes is reviewed and again highlighted how we can assess whether something will be stable or not. The physics of this is then applied in terms of centre of mass. The technique to find the centre of mass for a symmetrical shape is detailed and practices with questions. Suspended equilibrium and centre of mass is shown using a hanging bird cage and can also be demonstrated in class with a simple mass and string. Then an experiment is outlined to find the centre of mass of irregular shapes. Centre of mass it then related to real life contexts for practice exam questions. Lesson Objectives: - Explain what is meant by centre of mass. - Find the centre of mass for a simple symmetrical object and explain this position. - Find the centre of mass of an irregular shaped object. - Apply the principle of centre of mass to real-life problems.
GCSE 9-1 AQA Physics P11.1 - Pressure and Surfaces
NteachNteach

GCSE 9-1 AQA Physics P11.1 - Pressure and Surfaces

(2)
New GCSE AQA Physics lesson on ’ Pressure and Surfaces’ written in line with new AQA Physics specification. All questions provided with answers within power point. Starter looks at a balloon being pressed down onto a bed of nails - details of how to set this up simply with thumbtacks (obvious as it is) can be found in the notes box. Following this a problem of dog trapped on thin ice is presented for pupils to come up with potential rescue attempts to avoid breaking the ice. The concept of pressure is consolidated with the example of thumb tack being pressed into a wall - the equation for pressure is then detailed. To make use of the pressure equation an elephant and person in stiletto heels are compared mathematically to find which exerts the greatest pressure. Pupils are then guided to calculate the amount of pressure they exert onto the floor whilst standing. The lesson is concluded with a set of review question. Lesson Objectives: - State what pressure is and be able to calculate it. - Identify the units for pressure. - Explain the relationship between pressure, force and area. - Apply knowledge of pressure to different problems.
GCSE Physics P2 - Acceleration and Velocity - time graphs (v-t graphs)
NteachNteach

GCSE Physics P2 - Acceleration and Velocity - time graphs (v-t graphs)

(1)
Completely resourced lesson on velocity-time graphs with key content from AQA and Edexcel Physics. Lesson begins with a starter to get pupils thinking about acceleration whilst recapping terminal velocity. A prompt questions focuses on cars 0-60 mph time so pupils to discuss what acceleration is and what affects it. The acceleration equation is covered in detail clearly highlighting the units used - followed by questions to use the equation. Speed and velocity are contrasted whilst explaining what is meant by vectors and magnitude. The main task uses a movie car chase sequence for pupils to record the time between key incidents which are associated with a set velocity allowing a v-t graph to be produced, this allow for a discussion of v-t graph trends related to data. Key v-t trends are highlighted following this. Acceleration is related to the gradient of a v-t graph very clearly as done in the d-t graph lesson. This allows for a more detailed analysis of the car chase v-t graph (worksheet included). Plenary relates v-t graphs to d-t graphs and uses a v-t graph of a skydive for further questioning (also reviews terminal velocity).
GCSE AQA Physics - P5.3 - Electrical Power and potential difference
NteachNteach

GCSE AQA Physics - P5.3 - Electrical Power and potential difference

(4)
New GCSE AQA Physics lesson on 'Electrical Power and potential difference' written in line with new AQA Physics specification. Starter looks at the power of different devices of very different orders of magnitude. Following this a quick activity looks at powers and conversion using Watts as the unit to convert - reviews nW, µW, mW, W, kW, MW, GW. The power and energy transferred equation is reviewed briefly through review questions. The equation for power using voltage and current is introduced and how to re-arrange it. Fuse ratings are discussed with appropriate choice of fuse rating highlighted. Energy transfer by heating in conductors/resistors is reviewed and then related to the Power equation using resistance and current. How to re-arrange this is shown in detail. The lesson concludes with a series of review questions and exam style questions. Lesson Objectives: 1) State a definition for power. 2) Calculate the power of an appliance by the energy transferred. 3) Relate potential difference and current to electrical power. 4) Identify appropriate fuse ratings for appliances. 5) Identify the uses of resistance in conductors and calculate power using resistance.
GCSE AQA Physics - P1.2 - Conservation of Energy
NteachNteach

GCSE AQA Physics - P1.2 - Conservation of Energy

(2)
New GCSE AQA Physics lesson on 'Conservation of energy' written in line with new AQA Physics specification. Lessons starts with a 'energy store' description in regards to a pendulum (using interesting animations) which consolidates the previous lessons on energy stores. The swinging pendulum back towards the face is used as the vehicle to discuss conservation of energy, posing the question 'will you be hit in the face when the pendulum swings back?'. Students are led to an experiment to investigate a pendulum swing using basic lab equipment (clamp, string and mass for end of pendulum, can use a bobbin or plasticine) to make observations. This allows for an informed discussion and conclusion to be made to the original question. Energy in closed systems are explained with the reason for them to be used in science, open systems are also looked at in order to allow contrast. The conservation of energy is summarised through discussion of systems which lead to comparing and contrasting a bouncy ball and also bungee jumps in relation to changes in energy stores and conservation of energy. Lesson Objectives: 1) Use ideas about changes in energy stores to explain a pendulum swinging. 2) State what the ‘conservation of energy’ is and explain why conservation of energy is important. 3) Explain what is meant by a ‘closed system’ and how they are used in science. 4) Compare and contrast changes to energy stores between closed and open systems
GCSE AQA Physics- P10.3 - Forces and Braking
NteachNteach

GCSE AQA Physics- P10.3 - Forces and Braking

(2)
New GCSE AQA Physics lesson on Forces and Braking written in line with new AQA Physics specification. All questions are provided with answer within the Power Point. Lesson starts by discussing the speed limit for vehicles against the maximum speeds vehicles can achieve. Stopping distances is explored by looking at different size vehicles going at the same velocity and then braking. Stopping distance is also reviewed against different velocities. Thinking distance and braking distance are highlighted and discussed with a class activity exploring the effects of different factors on thinking distance with higher or lower activity. A class activity is also provided to investigate pupils reaction time to relate to thinking distance. A quick review on resultant forces in relation to vehicles is explored through questioning, this leads to the physics of stopping vehicles through braking. This leads to an exploration of the physics of braking in terms of changes to energy stores and then also how to calculate braking force. Summary questions are provided on this topic to finish the lesson. Plenary poses the starting question again in light of new information pupils will now have. Lesson Objectives: - Evaluate different vehicle speeds for stopping distances - Explain what happens during braking of a vehicle. - Identify and explain what can effect the stopping distance of a vehicle. - Investigate how a drivers reaction time effect stopping distance. - Calculate the braking force of a required for moving vehicles.
GCSE 9-1 AQA Physics 4.6 -Seismic Waves & Earthquakes
NteachNteach

GCSE 9-1 AQA Physics 4.6 -Seismic Waves & Earthquakes

(2)
New GCSE AQA Physics lesson on ’ Seismic Waves’ written in line with new AQA Physics specification. All questions provided with answers within power point. Lesson Objectives: State what seismic waves are Identify and state different layers of the earths structure Explain how seismic waves are produced Explain what primary and secondary seismic waves are Detail how seismic waves can provide information about the Earth’s structure
GCSE AQA Physics - P2.1 - Energy Transfer by Conduction
NteachNteach

GCSE AQA Physics - P2.1 - Energy Transfer by Conduction

(3)
New GCSE AQA Physics lesson on 'Energy Transfer by Conduction' written in line with new AQA Physics specification. Choice of two different starters to prompt discussion of heat transfer by conduction. Either looking at cooking using rods through meat or placing ice on different materials to melt. A series of scenarios are shown involving heat conduction which allow pupils to discuss why things feel hot or cold. A class experiment is provided which uses different material rods to identify which one conducts heat quickest. The results of this are then discussed with questions to start promoting good scientific investigation skills. Thermal conductivity is explored by looking at the meaning of each words separately and then together. Pupils are then to put a number of different material in order of thermal conductivity, which is then discussed for common materials which are highly conductive or poorly conductive. This leads onto thermal insulation and some final review questions. Lesson Objectives: 1) Provide definitions for conductors and insulators. 2) Identify common conductors and insulators and explain in relation to thermal conductivity. 3) Relate thermal conductivity to rate of energy transfer. 4) Explain ways in which rate of heat transfer can be reduced.
CHRISTMAS QUIZ 2019 - FREE
NteachNteach

CHRISTMAS QUIZ 2019 - FREE

(1)
A fun christmas quiz to end term on. Different rounds on general knowledge, tv & film, music, who is the celebrity santa, christmas riddles and pixelated objects.
GCSE AQA Physics - 10.6 - Impact Forces
NteachNteach

GCSE AQA Physics - 10.6 - Impact Forces

(4)
New GCSE AQA Physics lesson on Impact Forces written in line with new AQA Physics specification. All questions provided with answers within power point. Starter ‘Car Wars’ looks at the test collision between an old and a new vehicle to stimulate discussion of collisions and safety - posing the question which car is safer and why? This is discussed and reviewed focusing on crumple zones and comparing how each car crumpled and why this is good (or for the old car, bad). Crumple zones, air bags and seat belts are detailed and discussed for common function - to increase impact time to decrease impact force. This concept is highlighted by exploring the physics mathematically. Review questions with answers are provided for the topic. Lesson Objectives: - Identify key safety features of vehicles to reduce impact force. - Explain how ‘impact time’ affects impact force. - Relate momentum to impact forces in collisions and explain how impact forces can be reduced in car collisions. - Calculate impact forces resulting from collisions.
GCSE Physics P1 - Heat transfer Convection
NteachNteach

GCSE Physics P1 - Heat transfer Convection

(1)
Complete lesson on Convection including key content from AQA GCSE Physics. Simple starter to get pupils thinking about convection and also true and false to challenge misconceptions (such as heat rises). Includes experiment requiring potassium permanganate in a beaker and convection loop (if doing teacher demo) but could use food dye as a substitute. Plenary uses plenty of application questions and relation to the vacuum flask. More P1 lessons in same format. https://www.tes.com/member/Nteach
GCSE AQA Physics - Resolution of Forces - Parallelogram/Geometric Method
NteachNteach

GCSE AQA Physics - Resolution of Forces - Parallelogram/Geometric Method

(7)
New GCSE AQA Physics lesson on ' Resolution of Forces' written in line with new AQA Physics specification. All questions provided with answers within power point. The starter provides some simple combination of forces questions to review the subject of resultant forces - one question has two forces acting on different planes which pupils will be unfamiliar with and therefore how to solve - this prompts the lesson. The intuitive resultant force and direction is highlighted but also how we need to calculate exactly what they are. The parallelogram/geometric method is taught step by step with a worked example, this is done a second time with another example but with the class prompted to follow it and do the same on their own paper which also allows for discussion of difference in results. A collection of questions allows pupils to practice use of this method. This method is then used for inclined planes to explain frictional force acting to put object in equilibrium on inclined planes. Review questions again allow pupils to practice this. Lesson Objectives: - Review resolving simple combination of forces. - Identify when forces are acting on different lines/planes. - Calculate the resultant force on an object which has equal forces acting on different lines/planes. - Calculate the resultant force on an object which has unequal forces acting on different lines/planes. A worksheet is not provided as it is best for pupils to work on their own paper to define their own scales for this methodology.
GCSE AQA Physics - P16.3 - Planet, satellites and orbits
NteachNteach

GCSE AQA Physics - P16.3 - Planet, satellites and orbits

(4)
New GCSE AQA Physics lesson on ‘Planet, satellites and orbits’ written in line with new AQA Physics specification. Lesson Objectives: Identify what keeps objects in orbit. Identify the direction of force on an orbiting object. Explain how the velocity of a body changes as the body moves around its orbit. Explain how an object stays in orbit
Design an Experiment worksheet
NteachNteach

Design an Experiment worksheet

(3)
A worksheet to help pupils design/plan their own experiment/investigation. Some pupils still struggle with the intention of science experiments and each aspect required to carry out a successful experiment. The worksheet which is the same format as the experiment planning sheet poses each aspect as a question for pupils to really think what each aspect is about. This can be used as sheet to complete with a guided experiment allowing pupils to understand what each part of planned experiment is about or it can be used as a guide to help a pupil design an experiment (with some guidance of course)