Paperfriendlyresourcesuk
New Resources Coming soon!
PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.
Paperfriendlyresourcesuk
New Resources Coming soon!
PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.
Variation lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz.
AQA spec link: 4.6.2.1
Relevant chapter: B14 Variation and evolution. AQA Biology third edition textbook-Page 218-219.
Students are required to know the following;
Students should be able to describe simply how the genome and its interaction with the environment influence the development of the phenotype of an organism. Differences in the characteristics of individuals in a population is called variation and may be due to differences in:
• the genes they have inherited (genetic causes)
• the conditions in which they have developed (environmental causes)
• a combination of genes and the environment.
NB: Mutations reference will be taught in the subsequent lesson.
This bundle includes the B9 unit-Respiration. This is a combined and separate science unit. All lessons have been done in accordance to the specification requirements. Videos have been embedded for ease of use (no internet connection required although URL has also been provided), and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 23% by purchasing this bundle :)
Lesson 1-Aerobic respiration
Lesson 2-The response to exercise (optional practical activity)
Lesson 3-Anaerobic respiration
Lesson 4-Metabolism and the the liver
DNA structure and protein synthesis lessons created in accordance to the NEW AQA Specification (9-1). NB: BIOLOGY ONLY. I taught this topic in two lessons as it's a topic that's a difficult concept and can be taught effectively as opposed to being rushed. This resource is designed for higher ability class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheets and an interactive quiz.
AQA spec link: 6.1.5
Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 204-205.
Students should be able to describe DNA as a polymer made from four different nucleotides. Each nucleotide consists of a common sugar and phosphate group with one of four different bases attached to the sugar. DNA contains four bases, A, C, G and T. A sequence of three bases is the code for a particular amino acid. The order of bases controls the order in which amino acids are assembled to
produce a particular protein.
The long strands of DNA consist of alternating sugar and phosphate sections. Attached to each sugar is one of the four bases. The DNA polymer is made up of repeating nucleotide units.
(HT only) Students should be able to: •• recall a simple description of protein synthesis •• explain simply how the structure of DNA affects the protein made •• describe how genetic variants may influence phenotype: a) in coding DNA by altering the activity of a protein: and b) in non-coding DNA by
altering how genes are expressed.
(HT only) In the complementary strands a C is always linked to a G on the opposite strand and a T to an A.
(HT only) Students are not expected to know or understand the structure of mRNA, tRNA, or the detailed structure of amino acids or proteins.
(HT only) Students should be able to explain how a change in DNA structure may result in a change in the protein synthesised by a gene.
(HT only) Proteins are synthesised on ribosomes, according to atemplate. Carrier molecules bring specific amino acids to add to the growing protein chain in the correct order.
(HT only) When the protein chain is complete it folds up to form a unique shape. This unique shape enables the proteins to do their job as enzymes, hormones or forming structures in the body such as collagen.
DNA and the genome lesson created in accordance to the NEW AQA Specification (9-1).
Designed for a TRILOGY class, although content can be adjusted to suit any ability. Includes: slide animations, embedded videos and practice questions with answers on slides as well as a quiz.
AQA spec link: 6.1.4
Relevant chapter: B13 Genetics and reproduction. AQA trilogy textbook-Page 166-167.
Specification requires students to know the following;
Students should be able to describe the structure of DNA and define genome. The genetic material in the nucleus of a cell is composed of a chemical called DNA. DNA is a polymer made up of two strands forming a double helix. The DNA is contained in structures called chromosomes.
A gene is a small section of DNA on a chromosome. Each gene codes for a particular sequence of amino acids, to make a specific protein. The genome of an organism is the entire genetic material of that organism. The whole human genome has now been studied and this will have great importance for medicine in the future.
Students should be able to discuss the importance of understanding the human genome.
This is limited to the:
• search for genes linked to different types of disease
• understanding and treatment of inherited disorders
• use in tracing human migration patterns from the past
Exchanging materials lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability separates class, although content can be adjusted to suit any ability. Includes: slide animations, practice questions with answers on slides, worksheet, and homework (with MS)
AQA spec link: 4.1.3.1
Relevant chapter: B1 Cell structure and transport. AQA Biology third edition textbook-Page 22-23
Specification requires students to know the following;
A single-celled organism has a relatively large surface area to volume ratio. This allows sufficient transport of molecules into and out of the cell to meet the needs of the organism. Students should be able to calculate and compare surface area to volume ratios. Students should be able to explain the need for exchange surfaces and a transport system in multicellular organisms in terms of surface area to volume ratio.
Students should be able to explain how the small intestine and lungs in mammals, gills in fish, and the roots and leaves in plants, are adapted for exchanging materials. In multicellular organisms, surfaces and organ systems are specialised for exchanging materials. This is to allow sufficient molecules to
be transported into and out of cells for the organism’s needs.
The effectiveness of an exchange surface is increased by:
•• having a large surface area
•• a membrane that is thin, to provide a short diffusion path
•• (in animals) having an efficient blood supply
•• (in animals, for gaseous exchange) being ventilated.
Alcohol and other carcinogens lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's, worksheet and mini review. NB: If you are unable to play embedded videos please view slide notes for link.
AQA spec link: 4.2.2.6
Relevant chapter: B7 Non-communicable diseases. AQA Biology combined textbook-Page 106-107
Students are required to know the following;
A causal mechanism has been proven for some risk factors, but not in others.
• The effect of alcohol on the liver and brain function.
• The effects of alcohol on unborn babies.
• Carcinogens, including ionising radiation, as risk factors in cancer.
Many diseases are caused by the interaction of a number of factors.
Students should be able to understand the principles of sampling as applied to scientific data in terms of risk factors.
Students should be able to translate information between graphical and numerical forms; and extract and interpret information from charts, graphs and tables in terms of risk factors.
Students should be able to use a scatter diagram to identify a correlation between two variables in terms of risk factors.
Factors affecting transpiration lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability.Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link.
AQA spec link: 4.2.3.2
Relevant chapter: B4 Organising animals and plants. AQA Biology combined/third edition textbook-Page 68-69
Students are required to know the following;
Students should be able to explain the effect of changing temperature, humidity, air movement and light intensity on the rate of transpiration.
•plot and draw appropriate graphs, selecting appropriate scales for axes
Fossils and extinction lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes.
AQA spec link: 4.6.3.5
Relevant chapter: B14 Genetics and evolution. AQA Biology trilogy edition textbook-Page 192-193
Students are required to know the following;
Fossils are the ‘remains’ of organisms from millions of years ago, which
are found in rocks. Fossils may be formed:
• from parts of organisms that have not decayed because one or more
of the conditions needed for decay are absent
• when parts of the organism are replaced by minerals as they decay
•as preserved traces of organisms, such as footprints, burrows and
rootlet traces.
Many early forms of life were soft-bodied, which means that they
have left few traces behind. What traces there were have been mainly
destroyed by geological activity. This is why scientists cannot be certain about how life began on Earth.
WS 1.3 Appreciate why the fossil record is incomplete.
Variation lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability (trilogy/combined) class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz.
AQA spec link: 4.6.2.1
Relevant chapter: B13 Variation and evolution. AQA Biology trilogy edition textbook-Page 178-179.
Students are required to know the following;
Students should be able to describe simply how the genome and its interaction with the environment influence the development of the phenotype of an organism. Differences in the characteristics of individuals in a population is called variation and may be due to differences in:
• the genes they have inherited (genetic causes)
• the conditions in which they have developed (environmental causes)
• a combination of genes and the environment.
NB: Mutations reference will be taught in the subsequent lesson.
Food tests (RP 4-separate science). This practical was completed in one lesson, students were asked to construct a graph from their data for homework.
How did i deliver this practical?
Groups of 3, each group needs a test tube rack, 3 x test tubes and 1 x boiling tube. Goggles must be worn throughout the practical.
Circus activity-students visited a station to complete a food test (avoids too many students doing the same test or taking all the reagents).
Instead of using a hot water bath for the simple sugars test i lit a bunsen burner and allowed students to heat their solution in a boiling tube, holding it at a slant near the flame using tongs. Students really enjoyed this and the colour change is very sudden. Only one bunsen burner needs to be on for this and can be manned by the teacher to prevent misuse.
AQA spec link: 4.2.2.1
Relevant chapter: B3 Organisation and the digestive system. AQA Biology third edition textbook-Page 46-47
Students are required to know the following;
Required practical 4-qualitative reagents to test for a range of carbohydrates, lipids and proteins. To include: Benedict’s test for sugars; iodine test for starch; and Biuret reagent for protein. AT skills covered by this practical activity: AT 2 and 8. This practical activity also provides opportunities to develop WS and MS. Details of all skills are given in Key opportunities for skills development.
Please note that I have merged the content of two lessons into one resource.
Trophic levels and biomass transfers lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. This lesson Includes powerpoint timers, slide animations, past paper questions, self-assessment, interactive mark scheme, embedded videos and review.
For general enquiries or support please email: Paperfriendlyresources@gmail.com
NB: If you are unable to play embedded videos please view slide notes for link. *
AQA spec link: 4.7.4; 1, 2, 3
Relevant chapter: B18 Biodiversity and ecosystems. AQA Biology third edition textbook-Page 300-301
Students are required to know the following;
7.4.1 Students should be able to describe the differences between the trophic levels of organisms within an ecosystem.
Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain.
Level 1: Plants and algae make their own food and are called producers.
Level 2: Herbivores eat plants/algae and are called primary consumers.
Level 3: Carnivores that eat herbivores are called secondary consumers.
Level 4: Carnivores that eat other carnivores are called tertiary consumers. Apex predators are carnivores with no predators.
Decomposers break down dead plant and animal matter by secreting enzymes into the environment. Small soluble food molecules then diffuse into the microorganism.
7.4.2 Pyramids of biomass can be constructed to represent the relative amount of biomass in each level of a food chain.
Trophic level 1 is at the bottom of the pyramid.
Students should be able to construct accurate pyramids of biomass from appropriate data.
7.4.3 Students should be able to: • describe pyramids of biomass • explain how biomass is lost between the different trophic levels.
Producers are mostly plants and algae which transfer about 1% of the incident energy from light for photosynthesis.
Only approximately 10% of the biomass from each trophic level is transferred to the level above it.
Losses of biomass are due to:
• not all the ingested material is absorbed, some is egested as faeces
• some absorbed material is lost as waste, such as carbon dioxide and water in respiration and water and urea in urine.
Large amounts of glucose are used in respiration.
Students should be able to calculate the efficiency of biomass transfers between trophic levels by percentages or fractions of mass.
Students should be able to explain how this affects the number of organisms at each trophic level.
Catalyst and enzymes lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's and mini review. NB: If you are unable to play embedded videos please view slide notes for link.
AQA spec link: 4.2.2.1
4.4.2.3
Relevant chapter: B3 Organisation and the digestive system. AQA Biology third edition textbook-Page 42-43
Students are required to know the following;
Students should be able to relate knowledge of enzymes to metabolism.
Students should be able to carry out rate calculations for chemical reactions.
Enzymes catalyse specific reactions in living organisms due to the shape of their active site.
Students should be able to use the ‘lock and key theory’ as a simplified model to explain enzyme action.
Students should be able to explain the importance of sugars, amino acids, fatty acids, and glycerol in the synthesis and breakdown of carbohydrates, proteins, and lipids.
Metabolism is the sum of all the reactions in a cell or the body.
The energy transferred by respiration in cells is used by the organism for the continual enzyme controlled processes of metabolism that synthesise new molecules.
**Please note this lesson has been updated **
Smoking and the risk of disease lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s, worksheet and mini review. NB: If you are unable to play embedded videos please view slide notes for link, i have also included practical instructions in the notes.
AQA spec link: 4.2.2.6
Relevant chapter: B7 Non-communicable diseases. AQA Biology combined textbook-Page 104-105
Specification requires students to know the following;
Risk factors are linked to an increased rate of a disease.
They can be:
•• aspects of a person’s lifestyle
•• substances in the person’s body or environment.
A causal mechanism has been proven for some risk factors, but not in
others.
•• The effect of alcohol on the liver and brain function.
•• The effect of smoking on lung disease and lung cancer.
•• The effects of smoking and alcohol on unborn babies.
•• Carcinogens, including ionising radiation, as risk factors in cancer.
Many diseases are caused by the interaction of a number of factors.
The importance of communities lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link.
AQA spec link: 4.7.1.1
Relevant chapter: B15 Adaptations, interdependence and competitions. AQA Biology combined edition textbook-Page 206-207
Students are required to know the following;
Students should be able to describe: •different levels of organisation in an ecosystem from individual organisms to the whole ecosystem • the importance of interdependence and competition in a community.
An ecosystem is the interaction of a community of living organisms (biotic) with the non-living (abiotic) parts of their environment. To survive and reproduce, organisms require a supply of materials from their surroundings and from the other living organisms there. Plants in a community or habitat often compete with each other for light and space, and for water and mineral ions from the soil. Animals often compete with each other for food, mates and territory. Within a community each species depends on other species for food, shelter, pollination, seed dispersal etc. If one species is removed it can affect the whole community. This is called interdependence. A stable community is one where all the species and environmental factors are in balance so that population sizes remain fairly constant.
Feeding relationships lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link.
AQA spec link: 4.7.2.1
Relevant chapter: B17 organising an ecosystem. AQA Biology third edition textbook-Page 276-277
Students are required to know the following;
Students should understand that photosynthetic organisms are the producers of biomass = for life on Earth. Feeding relationships within a community can be represented by food chains. All food chains begin with a producer which synthesises molecules. This is usually a green plant or alga which makes glucose by photosynthesis.
Producers are eaten by primary consumers, which in turn may be eaten by secondary consumers and then tertiary consumers.
Consumers that kill and eat other animals are predators, and those eaten are prey. In a stable community the numbers of predators and prey rise and fall in cycles.
WS 1.2 Interpret graphs used to model predator-prey cycles.
Students should be able to interpret graphs used to model these cycles.
Edited 13/07/2020-PPT has been updated since last review, this resource also now includes a Control of BGL mini assessment with MS
Control of blood glucose lesson created in accordance to the NEW AQA Specification (9-1) for my separates class (Year 10-KS4). Includes: slide animations, embedded video, practice exam question with mark scheme. This resource is suitable for combined science students. May needed to be edited for foundation students.
AQA spec link: 5.3.2
Relevant chapter: B11 Hormonal coordination. AQA Biology third edition textbook-Page 162-163.
Blood glucose concentration is monitored and controlled by the pancreas.
If the blood glucose concentration is too high, the pancreas produces the hormone insulin that causes glucose to move from the blood into the cells. In liver and muscle cells excess glucose is converted to glycogen for storage. Students should be able to explain how insulin controls blood glucose (sugar) levels in the body.
Type 1 diabetes is a disorder in which the pancreas fails to produce sufficient insulin. It is characterised by uncontrolled high blood glucose levels. In Type 2 diabetes the body cells no longer respond to insulin produced by the pancreas. Students should be able to compare Type 1 and Type 2 diabetes and explain how they can be treated.
Students should be able to extract information and interpret data from graphs that show the effect of insulin in blood glucose levels in both people with diabetes and people without diabetes. (Will be incorporated in treating diabetes lesson).
Higher content- If the blood glucose concentration is too low, the pancreas produces the hormone glucagon that causes glycogen to be converted into glucose and released into the blood.
Students should be able to explain how glucagon interacts with insulin in a negative feedback cycle to control blood glucose (sugar) levels in the body. (Will be mentioned in negative feedback lesson)
Please note that I have merged the content of two lessons into one resource.
Trophic levels and biomass transfers lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. This lesson Includes powerpoint timers, slide animations, past paper questions, self-assessment, interactive mark scheme, embedded videos and review.
For general enquiries or support please email: Paperfriendlyresources@gmail.com
NB: If you are unable to play embedded videos please view slide notes for link. *
AQA spec link: 4.7.4; 1, 2, 3
Relevant chapter: B18 Biodiversity and ecosystems. AQA Biology third edition textbook-Page 300-301
Students are required to know the following;
7.4.1 Students should be able to describe the differences between the trophic levels of organisms within an ecosystem.
Trophic levels can be represented by numbers, starting at level 1 with plants and algae. Further trophic levels are numbered subsequently according to how far the organism is along the food chain.
Level 1: Plants and algae make their own food and are called producers.
Level 2: Herbivores eat plants/algae and are called primary consumers.
Level 3: Carnivores that eat herbivores are called secondary consumers.
Level 4: Carnivores that eat other carnivores are called tertiary consumers. Apex predators are carnivores with no predators.
Decomposers break down dead plant and animal matter by secreting enzymes into the environment. Small soluble food molecules then diffuse into the microorganism.
7.4.2 Pyramids of biomass can be constructed to represent the relative amount of biomass in each level of a food chain.
Trophic level 1 is at the bottom of the pyramid.
Students should be able to construct accurate pyramids of biomass from appropriate data.
7.4.3 Students should be able to: • describe pyramids of biomass • explain how biomass is lost between the different trophic levels.
Producers are mostly plants and algae which transfer about 1% of the incident energy from light for photosynthesis.
Only approximately 10% of the biomass from each trophic level is transferred to the level above it.
Losses of biomass are due to:
• not all the ingested material is absorbed, some is egested as faeces
• some absorbed material is lost as waste, such as carbon dioxide and water in respiration and water and urea in urine.
Large amounts of glucose are used in respiration.
Students should be able to calculate the efficiency of biomass transfers between trophic levels by percentages or fractions of mass.
Students should be able to explain how this affects the number of organisms at each trophic level.
This bundle includes the B12 unit-Homeostasis in action. This is a separates/biology ONLY unit. All lessons have been done in accordance to the specification requirements. Videos have been embedded for ease of use (no internet connection required), and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 33% by purchasing this bundle :)
Lesson 1-Controlling body temperature
Lesson 2-Removing waste products
Lesson 3-The human kidney (taught this over 2 lessons, both included in this resource pack).
Lesson 4-Dialysis-artificial kidney
Lesson 5-Kidney transplants
Due to popular demand I have uploaded a B13 bundle.
This bundle contains the content for BIOLOGY/SEPARATE science students. It includes all the resources you need to teach the B13 Reproduction topic. If you're teaching this topic (B12) to combined science students I've uploaded a separate bundle for it.
Lessons have been done in accordance to the specification requirements. Videos embedded for ease of use, paper friendly resources attached. Search the individual lessons for more information on the lesson content. Save 42% by purchasing this bundle. Higher topics included. Total 11 lessons + Past paper question pack on mitosis and meiosis.
L1 = types of reproduction
L2 = cell division and sexual reproduction
L3 = the best of both worlds
L4 = DNA and the genome
L5a = DNA structure
L5b = protein synthesis
L6 = gene expression and mutation
L7 = inheritance in Action
L8 = more about genetics
L9 = inherited disorders
L10 = screening for genetic disorders
Complete lesson
Includes: embedded videos, slide timers, slide animations, interactive answers on slides, and a plenary
3.2.1.1 In complex multicellular organisms, eukaryotic cells become
specialised for specific functions. Specialised cells are organised
into tissues, tissues into organs and organs into systems.