Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic B4: Bioenergetics (AQA Trilogy GCSE Combined Science & GCSE Biology)
GJHeducationGJHeducation

Topic B4: Bioenergetics (AQA Trilogy GCSE Combined Science & GCSE Biology)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic B4 (Bioenergetics) of the AQA Trilogy GCSE Combined Science & GCSE Biology specifications. The topics covered within these lessons include: Photosynthesis Uses of glucose from photosynthesis Limiting factors Aerobic respiration Anaerobic respiration Response to exercise All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B4: Natural selection and genetic modification (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B4: Natural selection and genetic modification (Edexcel GCSE Combined Science)

4 Resources
This bundle of 4 lessons covers a lot of the content in Topic B4 (Natural selection and genetic modification) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: The theory of evolution by natural selection Resistant bacteria as evidence for natural selection Classification Selective breeding and the impact The main stages of genetic engineering The risks of genetic engineering All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Genetic engineering (GCSE)
GJHeducationGJHeducation

Genetic engineering (GCSE)

(0)
This lesson uses the example of the genetic engineering of bacteria to produce insulin to walk students through the steps involved in this process. It has been written for GCSE students and therefore includes the detail required at this level, such as the involvement of restriction enzymes and the sticky ends that their cut produces. The lesson begins by challenging students to recognise that insulin is being described by a series of clues. Some further details of this hormone are recalled to test their previous knowledge of the endocrine system and also to lead into the genetic engineering of bacteria to make this protein. Moving forwards, time is taken to go through the details of plasmids and how they act as vectors as well as the enzymes, restriction and ligase. The main task of the lesson uses a series of descriptions to go through the steps involved in the process. Words or phrases are missing from each description so students have to use the terms they’ve encountered in this lesson as well as their prior knowledge to complete the step. Discussion-provoking questions are added to encourage the students to consider why certain parts of the process occur. The lesson concludes by the consideration of other organisms which have been genetically engineered as well as some of the risks of the process, which students are asked to complete for homework. As detailed above, this lesson has been designed for GCSE students but could be used with students taking A-level Biology, who are struggling to understand the detail found at this level and need to revisit the foundations.
Topic 4.4: Circulation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4.4: Circulation (Edexcel A-level Biology B)

5 Resources
The 5 lesson PowerPoints and multiple accompanying resources that are included in this bundle are highly-detailed and engaging. A wide variety of tasks, which include exam-style questions, differentiated tasks, discussion points and quiz competitions will check on the student understanding of the following specification points in topic 4.4 of the Edexcel A-level Biology B specification: The structure of the heart, arteries, veins and capillaries The advantages of a double circulatory system The sequence of events of the cardiac cycle The roles of the SAN, AVN and the bundle of His in the myogenic stimulation of the heart Interpreting ECG traces and pressure changes in the cardiac cycle The role of platelets and plasma proteins in the sequence of events leading to blood clotting The heart & blood vessels and the double circulatory system lesson have been uploaded for free so you can sample the quality of this bundle by downloading those
Topic 4.2: Cell transport mechanisms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4.2: Cell transport mechanisms (Edexcel A-level Biology B)

4 Resources
This bundle of 4 fully-resourced lessons have been planned to include a wide variety of tasks which will engage and motivate the students whilst covering the following points as detailed in topic 4.2 of the Edexcel A-level Biology B specification: The structure of the cell surface membrane, with reference to the fluid mosaic model Passive transport is brought about by diffusion and facilitated diffusion Passive transport is brought about by osmosis The relationship between the properties of molecules and the method by which they are transported Large molecules can be transported in and out of cells by endocytosis and exocytosis The process of active transport and the role of ATP The phosphorylation of ADP and the hydrolysis of ATP If you would like to sample the quality of the lessons in this bundle, then download the ATP & active transport lesson as this has been shared for free
Enzymes and temperature (AQA A-level Biology)
GJHeducationGJHeducation

Enzymes and temperature (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the temperature affects the rate of an enzyme-controlled reaction. The PowerPoint and the accompanying resource have been designed to cover the second part of point 1.4.2 of the AQA A-level Biology specification and ties in directly with the previous lesson on the properties of enzymes and their mechanism of action. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these future lessons. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and result in an active site that is no longer complementary to the substrate. Key terminology such as denaturation is used throughout. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of reaction and not the practical skills that would be covered in a core practical lesson
Competitive & non-competitive inhibitors (AQA A-level Biology)
GJHeducationGJHeducation

Competitive & non-competitive inhibitors (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resource are the last in a series of 5 lessons which cover the content detailed in point 1.4.2 of the AQA A-level Biology specification and describes the effect of both competitive and non-competitive inhibitors. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this will get the students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Action of enzymes (CIE A-level Biology)
GJHeducationGJHeducation

Action of enzymes (CIE A-level Biology)

(0)
This fully-resourced lesson describes how enzymes function intracellularly and extracellularly and explains their mode of action. The engaging PowerPoint and accompanying resources have been designed to cover points 3.1 (a, b & c) and considers the details of Fischer’s lock and key hypothesis and Koshland’s induced-fit model and explains how an enzyme’s specificity is related to their 3D structure and enables them to act as biological catalysts. The lesson has been planned to tie in with topic 2.3, and to challenge the students on their knowledge of protein structure and globular proteins. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication before they are challenged on their knowledge of carbohydrates, lipids and proteins from topics 1.2 - 1.4 as they have to recognise some extracellular digestive enzymes from descriptions of their biological molecule substrates.
Temperature & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Temperature & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains the effect of an increasing temperature on the rate of an enzyme-catalysed reaction. The PowerPoint and the accompanying resource are part of the 1st lesson in a series of 4 which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification and this lesson has been specifically planned to tie in with the lesson in 3.1 where the properties of enzymes and their mechanism of action were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in topics 19 and 13. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of reaction and not the practical skills that would be covered in a core practical lesson
Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-catalysed reaction. The PowerPoint and accompanying resource are the last in a series of 4 lessons which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification but this lesson also covers point 3.2 [c] as competitive and non-competitive inhibitors are introduced and their differing effects on enzyme activity described and explained. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this allows students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors must have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Immobilising an enzyme (CIE A-level Biology)
GJHeducationGJHeducation

Immobilising an enzyme (CIE A-level Biology)

(0)
This lesson describes how enzymes can be immobilised in calcium alginate and compares their activity against enzymes that are free in solution. The PowerPoint and the accompanying resources have been designed to cover point 3.2 (d) of the CIE A-level Biology specification. The lesson has been planned to challenge the students on their ability to apply knowledge to a potentially unfamiliar situation. A series of exam-style questions which include “suggest” and “describe and explain” questions are used throughout the lesson and these will allow the students to recognise the advantages and disadvantages of a particular method. Although the alginate method is the only one referenced in this specification point, the adsorption and covalent bonding methods are introduced and then briefly analysed to allow students to understand that a matrix doesn’t involve these bonds which could disrupt the active site. The remainder of the lesson introduces some actual examples of the use of immobilised enzymes with the aim of increasing the relevance. Please note that this lesson has been written to explain the effect of immobilisation on enzyme activity. The practical element of carrying out the investigation is described in a separate lesson.
Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)
GJHeducationGJHeducation

Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)

18 Resources
It’s no coincidence that cell structure and biological molecules find themselves as topics 1 and 2 of the CIE A-level Biology course, because a clear understanding of their content is absolutely critical to promote success with the 17 topics that follow. Hours and hours of intricate planning has gone into the 18 lessons included in this bundle to ensure that the detailed content is relevant and can be understood and that links are made to related sections of topics 3 - 19. The lesson PowerPoints and accompanying resources contain a wide range of activities that include: differentiated exam-style questions with clear mark schemes directed discussion points quiz competitions to introduce key terms and values current understanding and prior knowledge checks Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content of the resources A number of the resources have been shared for free so these can be downloaded in order to sample the quality of the lessons
The chloroplast & photosynthesis (CIE A-level Biology)
GJHeducationGJHeducation

The chloroplast & photosynthesis (CIE A-level Biology)

(0)
This lesson describes the structure of the chloroplast, focusing on the sites of the light-dependent and light-independent stages of photosynthesis. This fully-resourced lesson, which consists of an engaging PowerPoint and accompanying resources, has been designed to cover points 13.1 (a) & (b) of the CIE A-level Biology specification and has been specifically designed to introduce students to the grana and stroma as the site of the light-dependent and light-independent stages respectively before they are covered in greater detail in the lessons that are taught later in topic 13.1. Students were introduced to eukaryotic cells and their organelles in topic 1 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled, a range of activities are used to ensure that key details are understood such as the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to TP in the Calvin cycle. Links to other topics are made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch, as originally covered in topic 2.2
Topic 1.4.2: Many proteins are enzymes (AQA A-level Biology)
GJHeducationGJHeducation

Topic 1.4.2: Many proteins are enzymes (AQA A-level Biology)

5 Resources
Each of the five lessons included in this lesson bundle are fully-resourced and have been designed to engage and motivate the students whilst covering the following points that are detailed in topic 1.4.2 of the AQA A-level Biology specification: Each enzyme lowers the activation energy of the reaction it catalyses The induced-fit model of enzyme action The specificity of enzymes The effects of temperature, pH, enzyme concentration, substrate concentration and concentration of competitive and non-competitive inhibitors on the rate of enzyme-controlled reactions The lessons have been planned to come as a bundle and references are continually made to previous lessons in the topic to support the students in making the important links between structure, properties and actions of these globular proteins.
Topics 1.1, 1.2 & 1.3: Carbohydrates, Lipids & Proteins (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topics 1.1, 1.2 & 1.3: Carbohydrates, Lipids & Proteins (Edexcel A-level Biology B)

9 Resources
Carbohydrates, lipids and proteins are the key biological molecules and the specification points covering the relationship between their structures and functions are found in the very first three topics of Edexcel A-level Biology B course. With this in mind, hours of intricate planning has gone into each of the 9 lessons that are included in this bundle to ensure that students are continually engaged whilst the detailed content is covered by the variety of tasks. These tasks include exam-style questions with accompanying mark schemes so that students can assess their understanding, guided discussion periods and quiz competitions to introduce key values and terminology in a memorable way
Substrate & enzyme concentration & enzyme activity (Edexcel A-level Biology B)
GJHeducationGJHeducation

Substrate & enzyme concentration & enzyme activity (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how enzyme and substrate concentration affect the rate of enzyme activity. The PowerPoint and accompanying resources are the last in a series of 3 lessons which cover the detail of point 1.5 (iv) of the Edexcel A-level Biology B specification. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is achieved and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will come to recognise that this availability is the result of enzyme synthesis and enzyme degradation and their recall of transcription and translation is tested through a SPOT the ERRORs task. Please note that this lesson explains the Biology behind the effect of concentration on enzyme-controlled reactions and not the methodology involved in carrying out such an investigation as this is covered in a core practical lesson.
Conduction along myelinated axons (Edexcel A-level Biology B)
GJHeducationGJHeducation

Conduction along myelinated axons (Edexcel A-level Biology B)

(0)
This fully-resourced lesson explains why the speed of transmission along myelinated axons is greater than along non-myelinated axons. The PowerPoint and accompanying resources have been designed to cover point 9.5 (iii) of the Edexcel A-level Biology B specification which states that students should understand the role of saltatory conduction in the transmission of action potentials. A wide range of activities have been written into this resource to maintain the motivation of the students whilst ensuring that the detail is covered in real depth. Interspersed with the activities are understanding checks and prior knowledge checks to allow the students to not only assess their understanding of the current topic but also challenge themselves to make links to earlier topics such as the movement of ions across membranes and biological molecules. Time at the end of the lesson is also given to future knowledge such as the involvement of autonomic motor neurones in the stimulation of involuntary muscles. Over the course of the lesson, students will learn and discover the myelin sheath wrapped around the axons of sensory and motor neurones allows these neurones to conduct impulses quickly between receptors and the CNS and between the CNS and effectors. There is a focus on this myelin sheath and specifically how the insulation is not complete all the way along which leaves gaps known as the nodes of Ranvier which allow the entry and exit of ions. Saltatory conduction is poorly understood (and explained) by a lot of students so time is taken to look at the way that the action potential jumps between the nodes and this is explained further by reference to local currents. The rest of the lesson focuses on the other two factors which are axon diameter and temperature and students are challenged to discover these two by focusing on the vampire squid.
Endotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Endotherms (Edexcel A-level Biology B)

(0)
This detailed lesson describes how an endotherm regulates its temperature through behaviour and also physiologically. The engaging PowerPoint and accompanying resources have been designed to cover specification point 9.9 (vii) of the Edexcel A-level Biology B specification and includes descriptions of the roles of the autonomic nervous system, thermoreceptors, hypothalamus and skin. A wide range of activities have been written into this lesson so that students remain motivated throughout and take a genuine interest in the content. Understanding checks allow the students to assess their progress whilst the prior knowledge checks on topics such as enzymes and denaturation demonstrate the importance of being able to make connections and links between topics from across the specification. In addition to these checks, quiz competitions like HAVE an EFFECT which is shown in the cover image are used to introduce key terms and values in a fun and memorable way. The lesson begins by introducing the key term, endotherm, and challenging students to use their prior knowledge and understanding of terminology to suggest what this reveals about an organism. Moving forwards, students will learn how the heat generated by metabolic reactions is used as a source of internal heat. The main part of the lesson focuses on thermoregulation in humans (mammals) and time is taken to focus on the key components, namely the sensory receptors, the thermoregulatory centre in the hypothalamus and the responses brought about by the skin. The important details of why the transfer of heat energy between the body and the environment actually leads to a decrease in temperature are explored and discussed at length to ensure understanding is complete. Students are challenged to write a detailed description of how the body detects and responds to a fall in body temperature and this task is differentiated for those students who need some extra assistance. The peripheral thermoreceptors are introduced and this leads into the final section of the lesson that considers behavioural responses in humans and other animals.
ECGs and abnormal heart rhythms (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

ECGs and abnormal heart rhythms (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson looks at the use of electrocardiograms to aid the diagnosis of abnormal heart rhythms. The engaging PowerPoint and accompanying resources have been designed to cover point 7.12 (iii) of the Edexcel International A-level Biology specification but also can be used as a revision lesson as the students are challenged on their prior knowledge of the cardiac cycle and heart structure as covered in topic 1. The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem. This lesson has been designed to tie in with the lesson that covers the previous specification point on the normal electrical activity of the heart and the myogenic nature of cardiac muscle
Control of heart rate (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Control of heart rate (Edexcel Int. A-level Biology)

(0)
This lesson describes the role of the cardiovascular control centre in the medulla oblongata in the control of heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the first part of point 7.13 (ii) of the Edexcel International A-level Biology specification and explains how this regulation enables the rapid delivery of oxygen and the removal of carbon dioxide. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work