Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Photosynthesis: Light-dependent stage (CIE A-level Biology)
GJHeducationGJHeducation

Photosynthesis: Light-dependent stage (CIE A-level Biology)

(0)
This lesson describes the light-dependent stage, focusing on photoactivation of chlorophyll, photolysis of water and the production of ATP and reduced NADP. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 13.1 (f) of the CIE A-level Biology specification and also describes cyclic and non-cyclic photophosphorylation The light-dependent stage of photosynthesis is a process which students can find difficult to understand in the necessary detail so this lesson has been planned to walk them through all of the key details. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the cytochrome proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as eukaryotic cell structures and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic photophosphorylation. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take up to 3 hours of allocated A-level teaching time to complete.
Concentration & enzyme activity (AQA A-level Biology)
GJHeducationGJHeducation

Concentration & enzyme activity (AQA A-level Biology)

(0)
This fully-resourced lesson describes how enzyme and substrate concentration can affect the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resources are the 4th in a series of 5 lessons which cover the detail of point 1.4.2 of the AQA A-level Biology specification. Transcription and translation are also introduced and therefore this lesson could be used in preparation for the detailed lessons in topic 4.2. The first part of the lesson describes how an increase in substrate concentration will affect the rate of reaction when a fixed concentration of enzyme is used. Time is taken to introduce limiting factors and students will be challenged to identify substrate concentration as the limiting factor before the maximum rate is achieved and then they are given discussion time to identify the possible factors after this point. A series of exam-style questions are used throughout the lesson and the mark schemes are displayed to allow the students to assess their understanding and for any misconceptions to be immediately addressed. Moving forwards, the students have to use their knowledge of substrate concentration to construct a graph to represent the relationship between enzyme concentration and rate of reaction and they have to explain the different sections of the graph and identify the limiting factors. The final section of the lesson describes how the availability of enzymes is controlled in living organisms. Students will recognise that this availability is the result of enzyme synthesis and enzyme degradation and a number of prior knowledge checks challenge students on their knowledge of proteins as covered in topic 1.4.1 Please note that this lesson explains the Biology behind the effect of concentration on enzyme-controlled reactions and not the methodology involved in carrying out such an investigation as this is covered in a core practical lesson.
Temperature & enzyme activity (Edexcel A-level Biology B)
GJHeducationGJHeducation

Temperature & enzyme activity (Edexcel A-level Biology B)

(0)
This lesson describes and explains how temperature affects enzyme activity. The PowerPoint and the accompanying resource are part of the 1st lesson in a series of 3 which cover the content detailed in point 1.5 (iv) of the Edexcel A-level Biology B specification and this lesson has been specifically planned to tie in with the previous lesson covering 1.5 (i, ii & iii) where the structure, properties and mechanism of action of enzymes were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in topics 7 and 5. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of enzyme activity in a reaction and not the practical skills that would be covered in a core practical lesson
Topic 13: Photosynthesis (CIE A-level Biology)
GJHeducationGJHeducation

Topic 13: Photosynthesis (CIE A-level Biology)

5 Resources
This bundle contains 5 fully-resourced lessons which are highly detailed and will engage and motivate the students whilst the following content that is set out in topic 13 of the CIE A-level Biology specification is covered: Topic 13.1 Energy transferred as ATP and reduced NADP from the light dependent stage is used during the Calvin cycle to produce complex organic molecules The sites of the light-dependent and light-independent stages of photosynthesis The light-dependent stage as the photoactivation of chlorophyll, the photolysis of water and the transfer of energy to ATP and reduced NADP Cyclic and non-cyclic photophosphorylation The three main stages of the Calvin cycle The conversion of Calvin cycle intermediates to carbohydrates, lipids and amino acids Topic 13.2 Explain the term limiting factor in relation to photosynthesis Explain the effects of changes in light intensity, carbon dioxide concentration and temperature on the rate of photosynthesis Explain how an understanding of limiting factors is used to increase crop yields in protected environments The lesson PowerPoints and accompanying resources contain a wide range of tasks which include exam-style questions, whole class discussion periods and quiz competitions which are designed to introduce key terms and values in a memorable way.
OCR A-Level Biology A Module 4 REVISION LESSONS
GJHeducationGJHeducation

OCR A-Level Biology A Module 4 REVISION LESSONS

4 Resources
This bundle of 4 revision lessons have been designed to provide the students with lots of opportunities to evaluate their understanding of the topics found in module 4 of the OCR A-level Biology A specification. The bundle includes lessons which cover the three sub modules 4.1.1 (Communicable diseases), 4.2.1 (Biodiversity) and 4.2.2 (Classification and evolution) as well as a lesson to cover all of module 4 (Biodiversity, evolution and disease). As this module is often taught near to the end of the AS year, it doesn’t always receive the time that the other modules do. With this in mind, each of the lessons has been written to include a wide range of activities that allow the important details to be covered and any misconceptions addressed.
The endocrine system (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

The endocrine system (Edexcel GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content set out in specification point 7.1 (The endocrine system) of topic 7 of the Edexcel GCSE Biology & Combined Science courses. A wide range of activities have been written into the lesson with the aim of engaging and motivating the students whilst ensuring that the content is covered in detail. These activities include a number of quiz competitions which will challenge the students to identify an endocrine organ when presented with three organs as well as introducing them to the names of some of the hormones released by the pituitary gland. The following content is covered in this lesson: Hormones as chemicals which have a slow but long lasting effect on target organs The location of the pituitary, adrenal and thyroid glands in the human body The location of the pancreas, ovaries and testes in the human body The hormones which are secreted by the endocrine glands The effects of the hormones on their target organs This lesson has been written for GCSE-aged students who are studying on the Edexcel courses but it is suitable for younger students who are looking at the different organ systems
The importance of homeostasis (Edexcel GCSE Biology)
GJHeducationGJHeducation

The importance of homeostasis (Edexcel GCSE Biology)

(0)
This lesson has been designed to cover the content as detailed in points 7.9 & 7.10 (The importance of homeostasis) of the Edexcel GCSE Biology specification. Consisting of a detailed and engaging PowerPoint and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how a constant internal environment is maintained by homeostasis before being introduced to some of the factors which are regulated by these systems. Time is taken to look into osmoregulation and thermoregulation in more detail, so that students can explain that maintenance of the body temperature at the set-point allows enzymes to function at their maximum rate. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like SAY WHAT YOU SEE and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the Edexcel GCSE Biology specification but can be used with older students who need to recall the idea of homeostasis before taking it to greater depths in their studies.
Hormones in human reproduction (AQA GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Hormones in human reproduction (AQA GCSE Biology & Combined Science HT)

(0)
This lesson has been designed to cover the higher tier content of specification point 5.3.4 (Hormones in human reproduction) which is found in topic 5 of the AQA GCSE Biology & Combined Science specifications. A wide range of activities will engage and motivate the students whilst the content is covered in detail and understanding checks are included at regular points to enable the students to self-assess their new found knowledge. The following Biology is covered in this lesson: Reproductive hormones in the development of secondary sexual characteristics The role of testosterone as the main male reproductive hormone The role of oestrogen and progesterone in the repair and maintenance of the uterus lining The role of FSH and LH in the maturation of an egg and ovulation The interaction of these four hormones in the control of the menstrual cycle The final part of the lesson involves a number of questions where the students are challenged to apply their knowledge to unfamiliar situations This lesson has been designed for GCSE-aged students who are taking the AQA GCSE Biology or Combined Science course but it is also suitable for younger students who are looking into this topic as part of the reproduction module
Negative feedback (AQA GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Negative feedback (AQA GCSE Biology & Combined Science HT)

(0)
This resource contains an engaging PowerPoint and an accompanying worksheet which together cover the content of specification point 5.3.7 (Negative feedback) as found on the AQA GCSE Biology & Combined Science higher tier specifications. Over the course of the lesson, students will learn about the effects of the release of adrenaline and thyroxine and will understand how the latter is controlled by negative feedback. Due to the obvious connection to the previously learned endocrine system topic, regular opportunities are taken to check on this prior knowledge and these work well with the understanding checks which allow the students to assess their progress. Quiz competitions which include SAY WHAT YOU SEE and FROM NUMBERS 2 LETTERS are used to introduce key terms and abbreviations in a fun and memorable way, whilst the key details of the content is always at the forefront of the design of the lesson. This lesson has been written for students studying the higher tier of the AQA GCSE Biology or Combined Science courses but it is also suitable for use with A-level students who need to recall the key details of these two hormones
Control of body temperature (AQA GCSE Biology)
GJHeducationGJHeducation

Control of body temperature (AQA GCSE Biology)

(0)
The engaging Powerpoint and accompanying worksheet which come as part of this lesson resource have been designed to cover specification point 5.2.4 (Control of body temperature) as detailed in the AQA GCSE Biology specification. A wide range of activities which include Biology and Maths tasks and quiz competitions are interspersed with understanding and prior knowledge checks so that students are engaged and motivated whilst learning the key content in a memorable way and checking their progress. Students will learn that the body temperature is maintained at 37 degrees celsuis by a homeostatic control system called thermoregulation and will be challenged to recall the topic of enzymes to explain why this is so important. Time is taken to look at the responses brought about the effectors such as vasodilation and shivering and students will recognise how these lead a decrease or increase in body temperature back to the set point. Links are also made between the Sciences so that there is a deeper understanding of exactly why sweating cools the body down. This lesson has been designed for students studying the AQA GCSE Biology course but is suitable for older students who are studying Biology at A-level and need to recall the key details of thermoregulation.
Chromosomes and mitosis (WJEC GCSE Biology)
GJHeducationGJHeducation

Chromosomes and mitosis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover specification points 2.2 (a and b) about chromosomes and their role in mitosis as detailed in topic 2.2 (Cell division and stem cells) of the WJEC GCSE Biology specification. The wide range of activities will engage and motivate the students whilst ensuring that the content is covered in detail. In order for a deep understanding to be achieved, the other stages of the cell cycle (interphase and cytokinesis) are discussed so that students can recognise how th events that happen before and after this form of cell division results in genetically identical cells. A selection of summary questions will challenge the students on their understanding and ability to apply their knowledge to unfamiliar situations with questions about organisms other than humans. The lesson finishes by looking at the functions of mitosis in living organisms. This lesson has been designed for GCSE-aged students studying the WJEC GCSE Biology course but is also suitable for older students who are learning about mitosis and the cell cycle at A-level and need to go back over the key points
The structure and function of the EYE (WJEC GCSE Biology)
GJHeducationGJHeducation

The structure and function of the EYE (WJEC GCSE Biology)

(0)
This engaging and detailed resource, which contains a PowerPoint and accompanying worksheets, has been designed to cover the content of point 2.5 (e) of the WJEC GCSE Biology specification that states that students should know the structure and functions of the following 9 parts of the eye: sclera cornea pupil iris lens choroid retina blind spot optic nerve The lesson was designed to include a wide range of activities to engage and motivate the students so that the knowledge is more likely to stick. These activities include Have you got an EYE for the IMPOSSIBLE, as shown in the cover image, where students have to pick out the 8 structures of the human eye from the list and avoid the IMPOSSIBLE answer. There is also a particular focus on the light-sensitive cells in the retina, the pupil reflex and the change in the shape of the lens to accommodate near and distant objects. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for both older and younger students who may be studying the eye.
The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)
GJHeducationGJHeducation

The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)

(0)
This is a detailed lesson resource that covers the content of point 5.1.3 (a) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their understanding of the roles of mammalian sensory receptors. There is a particular focus on the Pacinian corpuscle to demonstrate how these receptors act as transducers by converting one form of energy into electrical energy which is then conducted as an electrical impulse along the sensory neurone. The lesson begins by looking at the different types of stimuli that can be detected. This leads into a written task where students have to form sentences to detail how thermoreceptors, rods and cones, hair cells in the inner ear and vibration receptors in the cochlea convert different forms of energy into electrical energy. Students will be introduced to the term transducer and will be challenged to work out what these cells carry out by using their sentences. As stated above, students will meet a Pacinian corpuscle and learn that this receptors detects pressure changes in the skin using the concentric rings of connective tissue in its structure. The rest of the lesson focuses on how ions are involved in the maintenance of resting potential and then depolarisation. Time is taken to look into the key details of these two processes so students are confident with this topic when met again during a lesson on the generation of action potentials. All of the tasks are differentiated to allow students of different abilities to access the work. As well as understanding checks to allow the students to assess their progress against the current topic, there are also a number of prior knowledge checks on topics like inorganic ions and methods of movement. This lesson has been designed for students studying the OCR A-level Biology course
Homeostasis and negative feedback (CIE International A-level Biology)
GJHeducationGJHeducation

Homeostasis and negative feedback (CIE International A-level Biology)

(0)
This is a detailed and engaging lesson which has been designed to cover specification points 14.1 (a, b and c) of the CIE International A-level Biology specification which states that students should be able to explain the importance of homeostasis and the roles of negative feedback and the communication systems in this control. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within strict limits and the importance of these systems are looked into in detail. They will also learn that carbon dioxide concentration and blood pressure are aspects that are controlled in the body and key terminology such as chemoreceptors and baroreceptors are used throughout so that students are confident with the meaning when met later in the module. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring it back to the optimum and the differences to positive feedback are also explored. This lesson has been written for students who are studying the CIE International A-level Biology course and ties in well with the other uploaded lessons on this topic such as those on the kidney
Genetic diagrams and phenotypic ratios (OCR A-level Biology A module 6.1.2 [b])
GJHeducationGJHeducation

Genetic diagrams and phenotypic ratios (OCR A-level Biology A module 6.1.2 [b])

6 Resources
Each of the 6 lessons within this bundle are fully-resourced and cover the content of point (b) of module 6.1.2 of the OCR A-level Biology A specification which states that students should be able to use genetic diagrams and phenotypic ratios to show patterns of inheritance and explain linkage and epistasis. Students are guided through the construction of the genetic diagrams for the inheritance of one or two genes and are shown how to analyse the phenotypic ratio to determine whether linkage has occurred or whether a gene interaction is involved. The wide range of activities which includes exam questions with visual mark schemes, differentiated tasks and quiz competitions will maintain engagement whilst providing the students with opportunities to assess their progress against the current topic.
Topic 16.2 [b]: The roles of genes in determining the phenotype  (CIE A-level Biology)
GJHeducationGJHeducation

Topic 16.2 [b]: The roles of genes in determining the phenotype (CIE A-level Biology)

5 Resources
Each of the 5 lessons within this bundle are fully-resourced and cover the content of point (b) of topic 16.2 of the CIE A-level Biology specification which states that students should be able to use genetic diagrams to solve problems which involve the following: monohybrid and dihybrid crosses autosomal linkage sex-linkage codominance multiple alleles gene interactions Students are guided through the construction of the genetic diagrams for the inheritance of one or two genes and are shown how to analyse the phenotypic ratios to determine whether linkage has occurred or whether a gene interaction is involved. The wide range of activities which includes exam questions with visual mark schemes, differentiated tasks and quiz competitions will maintain engagement whilst providing the students with opportunities to assess their progress against the current topic
Gene interactions (CIE International A-level Biology)
GJHeducationGJHeducation

Gene interactions (CIE International A-level Biology)

(0)
This fully-resourced lesson explores how the presence of particular alleles at one locus can mask the expression of alleles at a second locus in gene interactions. The detailed and engaging PowerPoint and associated resources have been designed to cover the part of point 16.2 (b) of the CIE International A-level Biology specification which states that students should be able to use genetic diagrams to solve problems that involve gene interactions. This is a topic which students tend to find difficult, and therefore the lesson was written to split the topic into small chunks where examples of dominant, recessive and complimentary gene interactions are considered, discussed at length and then explained. Understanding checks, in various forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. There are regular links to related topics such as dihybrid inheritance so that students can meet the challenge of interpreting genotypes and link to the different types of interactions
Hardy-Weinberg principle (AQA A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg principle (AQA A-level Biology)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equation to calculate the frequency of alleles, genotypes and phenotypes in a population. Both the detailed PowerPoint and differentiated practice questions on a worksheet have been designed to cover the 2nd part of point 7.2 of the AQA A-level Biology specification which expects students to be able to use this mathematical model The lesson begins by looking at the equation and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged.
CIE International A-level Biology TOPIC 13 REVISION (Photosynthesis)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 13 REVISION (Photosynthesis)

(0)
This engaging REVISION LESSON has been designed to cover the content of topic 13 (Photosynthesis) of the CIE International A-level Biology specification. Filled with a wide range of activities, that include exam questions with explanations, quick tasks and quiz competitions, the students will be motivated whilst they assess their ability to apply their knowledge. Due to the obvious importance of this reaction, assessment questions are extremely common and so a deep understanding of this topic is key to success and the lesson has been designed to cover the important ideas. The following sub-topics have received particular attention in this lesson: Photophosphorylation An outline of cyclic and non-cyclic photophosphorylation Photolysis of water The light dependent reaction The structure of the chloroplast and the site of the different reactions The Calvin cycle The limiting factors of photosynthesis Investigating the effect of light intensity using DCPIP as a redox indicator and a Hill suspension The effect of temperature on the rate There is a focus on terminology throughout the lesson so that students are comfortable with the terms that will be encountered in exam questions. Revision lessons on the other topics of the specification are uploaded so please take a moment to look at those too
Meiosis (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Meiosis (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson focuses on the role of meiosis in ensuring genetic variation through the production of non-identical gametes. The detailed PowerPoint and accompanying resource have been designed to cover point 3.9 of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should be able to describe how crossing over and independent assortment result in genetically unidentical daughter cells. In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations.