Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
CIE IGCSE Biology Topic 3 REVISION (Movement in and out of cells)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 3 REVISION (Movement in and out of cells)

(0)
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been designed with the aim of motivating and engaging the students whilst they assess their understanding of the content found in topic 3 (Movement in and out of cells) of the CIE IGCSE Biology specification for examination in June and November 2020 and 2021. This revision resource contains a detailed and engaging PowerPoint (42 slides) and associated worksheets, some of which have been differentiated to help and challenge differing abilities. The range of activities have been designed to cover as much of the Core and supplement content as possible but the following sub-topics have been given particular attention: Active transport as the movement of particles against their concentration gradient using energy from respiration The importance of active transport as demonstrated by the absorption of mineral ions by the root hair cells The movement of water across cell membranes by osmosis The importance of osmosis and water potential in the uptake of water by plants The effects on plant cells of immersion into solutions of different concentrations The importance of turgor pressure for a plant Diffusion as the net movement of particles with the concentration gradient Recognising the factors that influence the rate of diffusion In addition, topics from other modules such as specialised plant cells are covered so that students can see the importance of being able to make connections and links between Biological topics.
CIE IGCSE Biology Topic 2 REVISION (Organisation of the organism)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 2 REVISION (Organisation of the organism)

(0)
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been designed with the aim of motivating and engaging the students whilst they assess their understanding of the content found in topic 2 (Organisation of the organism) of the CIE IGCSE Biology specification for examination in June and November 2020 and 2021. This revision resource contains an engaging PowerPoint (53 slides) and an associated worksheet. The range of activities have been designed to cover as much of the Core and Supplement content as possible but the following sub-topics have been given particular attention: The function of the organelles found in animal and plant cells The features of specialised cells which allow them to perform their function The mitochondria and the production of energy for use in cell activities Calculating size and magnification by converting between millimetres and micrometres Tissues, organs and organ systems
CIE IGCSE Biology Topic 11 & 12 REVISION (Gas exchange in humans & respiration)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 11 & 12 REVISION (Gas exchange in humans & respiration)

(0)
This revision resource has been designed to cover the content in both topic 11 (Gas exchange) and topic 12 (Respiration) of the CIE IGCSE Biology specification for examination in June and November 2020 and 2021. The topics have been combined because of the huge crossover and the aim was to encourage students to see those connections and to make the Biological links. The resource contains an engaging and detailed PowerPoint (77 slides) and associated worksheets, some of which have been differentiated to provide assistance for those students who need it. Included in the resource are exam questions, quick tasks and quiz competitions which try to cover as much content as possible with the following areas receiving particular attention: The internal and external structure of the trachea The structure of the alveoli to allow efficient gas exchange The role of the ribs, intercostal muscles and diaphragm in ventilation The differences in composition between inspired and expired air Aerobic respiration in seeds The uses of energy in the body of humans Anaerobic respiration and the oxygen debt This resource contains a large emphasis on the mathematical element of the Biology course. Students are guided through key skills such as percentage change and then challenged to apply
CIE IGCSE Combined Science B4 REVISION (Enzymes)
GJHeducationGJHeducation

CIE IGCSE Combined Science B4 REVISION (Enzymes)

(0)
This revision resource contains a concise yet informative PowerPoint (25 slides) and a worksheet that will enable the students to assess their understanding of the topic B4 (Enzymes) content of the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. The range of exam questions (with explained answers), quick tasks and quiz competitions have been designed to cover as much content as possible but the following topics have received particular attention: Enzymes as biological catalysts that speed up reactions The binding of a substrate with the active site of an enzyme The effect of a changing pH on the activity of an enzyme The effect of a changing temperature on the activity of an enzyme Denaturation
Chromosomes, mitosis and the cell cycle (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Chromosomes, mitosis and the cell cycle (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content of specification point 4.1.2.1 (Chromosomes) and 4.1.2.2 (Mitosis and the cell cycle) of the AQA GCSE Biology and Combined Science course. Cell division is a topic which can cause students a number of problems so this lesson has been designed to ensure that the key details are covered and checked constantly. As well as the understanding and previous knowledge checks, quiz competitions are written into the lesson to maintain engagement and motivation. The lesson begins with the introduction of the term cell cycle and students will learn that the cycle consists of three stages. The key details of each of these stages is covered during the main part of the lesson so that students can meet the specification requirements of being able to describe the main events. Time is allotted for discussion to encourage students to converse about important points such as what happens to the replicated chromosomes during mitosis to enable identical daughter cells to be produced. Opportunities are taken to make links to other topics such as animal and plant cells as students are challenged to recall the functions of some sub-cellular structures. The final part of the lesson involves a series of summary questions which challenges the students to not only recall content but also to apply to unfamiliar organisms and it is not until the final question that they will answer a question about the cell cycle in humans.
CIE IGCSE Combined Science B2 REVISION (Cells)
GJHeducationGJHeducation

CIE IGCSE Combined Science B2 REVISION (Cells)

(0)
This revision resource contains an engaging and informative PowerPoint (49 slides) and a differentiated worksheet that will enable the students to assess their understanding of the topic B2 (Cells) content of the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. The following topics have been given particular attention in this lesson: The structure and function of red blood cells Diffusion as the movement of molecules from a high concentration to a low concentration The structure of root hair cells to allow absorption of minerals and water from the soil Osmosis investigations The effect on plant cells of immersion in solutions of different water potentials The function of the organelles found in animal and plant cells The structure and function of specialised cells This resource is ideal for revision purposes during or at the end of the topic and in the lead up to mocks or the actual IGCSE exams
Osmosis (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Osmosis (AQA GCSE Biology & Combined Science)

(0)
This concise lesson has been designed to cover the content found in specification point 4.1.3.2 (Osmosis) of topic 1 of the AQA GCSE Biology & Combined Science specifications. This resource contains an engaging PowerPoint (23 slides) and accompanying worksheets, some of which have been differentiated to help students of different abilities to take on the task at hand. The lesson begins with the introduction of the term, osmosis, and then students are challenged to use their knowledge of diffusion to write a definition for this method of movement of water molecules. A series of questions which check understanding are included at this early point of the lesson to ensure that the key points are known and any misconceptions are quickly addressed. Students are also challenged with an application question as these can often cause them the most problems. Moving forwards, the rest of the lesson focuses on an osmosis investigation. Scientific skills are tested during a range of tasks as well as numerical skills and guidance is given on how to calculate percentage change. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but can be used with younger students who are keen to learn about osmosis
The eye (AQA GCSE Biology)
GJHeducationGJHeducation

The eye (AQA GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 5.2.3 (The eye) of topic 5 of the AQA GCSE Biology specification. This resource contains an engaging and detailed PowerPoint (46 slides) and accompanying worksheets, some of which have been differentiated to help students of different abilities to take on the task. The lesson begins with a game of IMPOSSIBLE (shown in the picture) where students are challenged to pick out the names of the 7 structures of the eye which the specification states they have to be able to identify on a diagram. Students are given the functions of the cornea and the sclera to guide them at the start of the labelling task before they have to use their previous knowledge of the nervous system to write a function for the optic nerve. Literacy and numeracy skills are tested throughout the lesson and the next round of the quiz challenges them to use synonyms to recognise the key terms of adaptation and accommodation. Time is taken to focus on the process of accommodation so that students can see how the ciliary muscles and suspensory ligaments interact to change the shape of the lens and allow both near and distant objects to be seen clearly. This takes the lesson nicely into the next section where the conditions of myopia and hyperopia are considered. Again, the students are challenged on their recognition of Biology terminology to spot that these are the medical names for short and long-sightedness. Students are guided through the correction of myopia before being challenged to write a letter to the mother of a girl who suffers from hyperopia, explaining how the lens is used to correct the defect. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but can be used with younger students who are keen to learn about the eye or with A-level students who need to go back over the key points.
CIE IGCSE Combined Science B3 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE IGCSE Combined Science B3 REVISION (Biological molecules)

(0)
This concise, engaging revision lesson has been designed to include activities that will motivate the students whilst they assess their understanding of topic B3 (Biological molecules) of the CIE IGCSE Combined Science specification. An understanding of biological molecules is fundamental to the understanding of a lot other Biology topics and this lesson has attempted to make the links between the different areas. The range of activities which include exam questions, quick tasks and quiz competitions have been written to cover as much of the content as possible but the following topics have received particular attention: The chemical elements in carbohydrates The formation of starch and glycogen from glucose The iodine test for starch Lipids are formed of fatty acids and glycerol Investigational skills The ethanol emulsion test for lipids This resource includes a PowerPoint (27 slides) and a worksheet with a task about the digestion of milk fat so students can recognise the components of lipids
Human endocrine system (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Human endocrine system (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content set out in specification point 5.3.1 (Human endocrine system) of topic 5 of the AQA GCSE Biology & Combined Science courses. A wide range of activities have been written into the lesson with the aim of engaging and motivating the students whilst ensuring that the content is covered in detail. These activities include a number of quiz competitions which will challenge the students to identify an endocrine organ when presented with three organs as well as introducing them to the names of some of the hormones released by the pituitary gland. The following content is covered in this lesson: Hormones as chemicals which have a slow but long lasting effect on target organs The location of the pituitary, adrenal and thyroid glands in the human body The location of the pancreas, ovaries and testes in the human body The hormones which are secreted by the endocrine glands The effects of the hormones on their target organs This lesson has been written for GCSE-aged students who are studying on the AQA courses but is suitable for younger students who are looking at the different organ systems
The human nervous system (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

The human nervous system (AQA GCSE Biology & Combined Science)

(0)
This lesson has been designed to cover the content as detailed in point 5.2.1 (The structure and function of the human nervous system) of the AQA GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (38 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how receptors, sensory neurones, the CNS, motor neurones and effectors are involved in the detection and response to a stimulus. Reflex reactions are also considered and discussed so that students can recognise how these automatic and rapid responses avoid damage and pain to humans. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like FROM NUMBERS 2 LETTERS and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way. This lesson has been written for GCSE-aged students who are studying the AQA GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the nervous system for their A level course before taking it to greater depths
The components of a REFLEX ARC (WJEC GCSE Biology)
GJHeducationGJHeducation

The components of a REFLEX ARC (WJEC GCSE Biology)

(0)
This lesson resource contains a engaging PowerPoint and accompanying worksheets, all of which have been designed to cover the content of specification point 2.5 (d) on the WJEC GCSE Biology specification. This specification point states that students should know the components of a reflex arc. This lesson builds on the knowledge from the previous lesson on the structure and function of the nervous system (2.5b). The lesson begins by challenging the students to come up with the word reflex having been presented with 5 other synonyms of the word automatic. This leads into a section of discovery and discussion where students are encouraged to consider how a reflex arc can be automatic and rapid despite the fact that the impulse is conducted into the CNS like any other reaction. Students will be introduced to the relay neurone and will learn how this provides a communication between the sensory neurone and the motor neurone and therefore means that these arcs do not involve processing by the brain. Moving forwards, the main task of the lesson challenges the students to write a detailed description of a reflex arc. Assistance is given on the critical section which involves the relay neurone in the spinal cord before they have to use their knowledge of nervous reactions to write a paragraph before and after to complete the description. As a final task, students will have to compare the structure and functions of sensory, motor and relay neurones. Although this lesson has been designed for students studying on WJEC GCSE Biology course, it is also suitable for older students who are studying reflex reactions at A-level and need to recall the main details.
The control of BLOOD GLUCOSE (WJEC GCSE Biology)
GJHeducationGJHeducation

The control of BLOOD GLUCOSE (WJEC GCSE Biology)

(0)
This concise lesson presentation and accompanying worksheet have been designed to cover the content of point 2.5 (h) of the WJEC GCSE Biology specification which states that students should understand the need to keep blood glucose levels within a constant range. Homeostasis is a running theme throughout the 2.5 topic so this lesson builds on knowledge from earlier topics to ensure that there is a deep understanding. The lesson begins by introducing glucose and a quiz competition will lead to the range 4 - 7, so that students can recognise that this is the set range within which this molecule’s concentration must be kept. Time is taken to look at some of the health problems that are associated with an increase in concentration above this upper limit and the general Biological knowledge of the students is tested with some questions. Moving forwards, the main task of the lesson involves a step by step guide through the stages in the response to a high blood glucose concentration and shows the students how the release of insulin leads to the uptake of glucose from the blood and a conversion to glycogen by the liver and muscle cells. The summary task at the end challenges the students to bring all of the information together to write a detailed description of this response and this activity is differentiated to aid those students who need extra assistance. This lesson has been designed for students studying the WJEC GCSE Biology course but could be used with A-level students who are beginning this topic and need to recall the key details.
Thyroxine and the control of metabolic rate (Edexcel GCSE Biology & Combined Science HT)
GJHeducationGJHeducation

Thyroxine and the control of metabolic rate (Edexcel GCSE Biology & Combined Science HT)

(0)
This resource contains a concise, engaging PowerPoint and accompanying worksheets which together cover the content of specification point 7.3 (Thyroxine and the control of metabolic rate as an example of negative feedback) as found on the Edexcel GCSE Biology & Combined Science higher tier specifications. Over the course of the lesson, students will learn about the effects of the release of thyroxine, how this release is regulated by the pituitary gland and hypothalamus and also will understand how this control is an example of negative feedback. Due to the obvious connection to the previously learned endocrine system topic, regular opportunities are taken to check on this prior knowledge and these work well with the understanding checks which allow the students to assess their progress. A quiz competition called FROM NUMBERS 2 LETTERS is used to introduce the key abbreviations in a fun and memorable way, whilst the key details of the content is always at the forefront of the design of the lesson. This lesson has been written for students studying the higher tier of the Edexcel GCSE Biology or Combined Science courses but it is also suitable for use with A-level students who need to recall the key details of these two hormones
Homeostasis (WJEC GCSE Biology)
GJHeducationGJHeducation

Homeostasis (WJEC GCSE Biology)

(0)
This fully-resourced lesson has been designed to cover the content found in specification point 2.5 (f) of the WJEC GCSE Biology specification which states that students should understand why animals need to regulate the conditions inside their bodies. This resource contains an engaging and detailed PowerPoint (45 slides) and accompanying worksheets The lesson begins by challenging the student’s literacy skills as they are asked to recognise the key term, optimum, from 6 of its’ synonyms. Moving forwards, a range of quiz competitions are used to introduce the term homeostasis and to provide a definition for this key process. Students are given a newspaper article about water and blood glucose so they can recognise 2 conditions which are controlled in the human body. The next part of the lesson looks at the importance of maintaining the levels of water and glucose by considering the medical problems that could arise if they move away from the optimum levels. Students will learn that body temperature is also controlled and links are made to earlier knowledge as they have to explain why an increase in temperature above the set point would be an issue because of the denaturation of enzymes. The rest of the lesson looks at the three parts that are included in all control systems before a final quiz round introduces the receptors, coordination centre and effectors in the control of body temperature. As stated at the top, this lesson has been designed for GCSE-aged students who are studying the WJEC GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the process in more detail
Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic 7: Animal coordination, control and homeostasis (Edexcel GCSE Biology)

10 Resources
Each of the 10 lessons in this bundle have been written to include a wide range of activities that will engage and motivate the students whilst giving them regular oppotunities to assess their understanding of the current topic as well as checking on their knowledge of any previously linked topics. Each lesson has been written for students studying the Edexcel GCSE Biology course and the following specification points in topic 7 are covered by the lessons in this bundle: 7.1: Endocrine glands and the hormones they secrete 7.3: The control of metabolic rate by thyroxine as an example of negative feedback 7.4 & 7.5: The stages and the interactions of the hormones in the menstrual cycle 7.6 & 7.7: Barrier and hormonal contraception, the menstrual cycle and preventing pregnancy 7.8: The use of hormones in Assisted Reproductive Technology 7.9 & 7.10: The importance of homeostasis, including thermoregulation and osmoregulation 7.11 & 7.12: Thermoregulation 7.13 & 7.14: The control of blood glucose concentration by the release of insulin and glucagon 7.15 & 7.16: The causes and control of diabetes type I and II 7.19, 7.20, 7.21 & 7.22: The function of the kidney, the treatments for kidney failure and the formation of urea Each lesson contains a detailed and engaging PowerPoint and accompanying worksheets, most of which are differentiated to enable students of different abilities to access the work.
The causes and control of diabetes type I and II (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

The causes and control of diabetes type I and II (Edexcel GCSE Biology & Combined Science)

(0)
This is a fully-resourced lesson consisting of an engaging PowerPoint and differentiated worksheets which have been designed to cover the content of points 7.15 & 7.16 as detailed on the Edexcel GCSE Biology & Combined Science specifications. This point states that students should be able to describe the cause of diabetes type I and II and describe how they are both controlled. There are links made throughout the lesson between this topic and the control of blood glucose concentration from specification point 7,13 and 7.14 The lesson has been designed to take the format of a diabetic clinic where the students perform the duties of the attending doctor. They will move through the different expectations of the role which includes identifying symptoms, diagnosis of type I or II and communication with the patients to reveal the findings. The wide range of activities will enable the students to learn how to spot that someone is suffering from diabetes and the similarities and differences between the different types so they can determine which one is being presented. The summary tasks challenge the students to construct a letter to a patient who is suffering from type II and to identify the correct type from another doctor’s letter. Understanding and previous knowledge checks are interspersed with quiz competitions, like the one shown in the cover image, which make the learning fun and memorable and enable the students to assess their progress. This lesson has been designed for students studying the Edexcel GCSE Biology or Combined Science course but is suitable for both younger and older students who are focusing on this disease
The importance of the myelin sheath (CIE International A-level Biology)
GJHeducationGJHeducation

The importance of the myelin sheath (CIE International A-level Biology)

(0)
This lesson has been written to cover the detail of specification point 15.1 (f) of the CIE International A-level Biology specification which states that students should be able to explain the importance of myelination. A wide range of activities have been written into this resource to maintain the motivation of the students whilst ensuring that the detail is covered in depth. Interspersed with the activities are understanding checks and prior knowledge checks to allow the students to not only assess their understanding of the current topic but also challenge themselves to make links to earlier topics such as the movement of ions across membranes and biological molecules. Time at the end of the lesson is also given to future knowledge such as the involvement of autonomic motor neurones in the stimulation of involuntary muscles. Over the course of the lesson, students consider the structure of the myelin sheath and specifically how the insulation is not complete all the way along which leaves gaps known as the nodes of Ranvier which allow the entry and exit of ions. Saltatory conduction is poorly explained by a lot of students so time is taken to look at the way that the action potential jumps between the nodes and this is explained further by reference to local currents. The rest of the lesson focuses on the other two factors which are axon diameter and temperature and students are challenged to discover these two by focusing on the vampire squid. This lesson has been designed for students studying the CIE International A-level Biology course and the other part of this specification point which covers the refractory period was explained in the previous lesson on the transmission of the action potential
Blood glucose concentration (CIE International A-level Biology)
GJHeducationGJHeducation

Blood glucose concentration (CIE International A-level Biology)

(0)
This fully-resourced lesson is highly detailed and covers all of specification points 14.1 (h, i and j) of the CIE International A-level Biology specification which states that students should be able to describe how blood glucose concentration is regulated using negative feedback mechanisms that release insulin or glucagon and outline the role of cyclic AMP. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The final part of the lesson looks at the role of the secondary messenger, cyclic AMP, and describes how this is involved when glucagon and adrenaline attach to receptors on the liver. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the CIE International A-level Biology course and ties in with the other uploaded lessons which cover the content of topic 14.1 (Homeostasis in mammals)
GENETIC TERMS (CIE International A-level Biology)
GJHeducationGJHeducation

GENETIC TERMS (CIE International A-level Biology)

(0)
This lesson focuses on the use and explanation of key genetic terms which will support students in their understanding of the topic 16 (inherited change) of the CIE International A-level Biology specification. In this topic, students are expected to use genetic diagrams to solve problems and this is only possible with a clear understanding of the genetic terminology that will be used in related exam questions. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous