Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1235k+Views

2041k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Group 0:  The Noble Gases
GJHeducationGJHeducation

Group 0: The Noble Gases

(0)
This is a fully-resourced lesson which looks at the properties of group 0 of the Periodic Table, the Noble Gases, and includes a lesson presentation (29 slides) and an associated worksheet. The lesson uses a range of engaging quiz competitions to enable the students to understand why these elements do not react. Other properties such as their boiling points are explored and there is continual reference to the other groups of elements so that students can make clear comparisons. This lesson has been designed for GCSE students (14 - 16 year olds in the UK), but it is also suitable for younger students who might be carrying out a project on the Periodic Table
Group 1: The alkali metals
GJHeducationGJHeducation

Group 1: The alkali metals

(0)
This is a detailed and engaging lesson presentation which focuses on the properties of the elements found in group 1 of the Periodic Table, the alkali metals. Students are challenged throughout the lesson to be able to link their observations of the reactions to the properties. Once they have learnt that the reactivity increases as they move down the group, time is taken to go over this in detail so that students can explain why sodium is more reactive than lithium (and so on) in terms of electron configuration. Progress checks are embedded throughout the lesson so that students have the opportunity to assess their understanding. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is suitable for younger students who may be carrying out a project on the Periodic Table
Chemical and physical changes
GJHeducationGJHeducation

Chemical and physical changes

(0)
A concise and engaging lesson, which looks at chemical and physical changes with the key objective that students can recognise the differences between the two. Key terminology is used throughout, such as irreversible and practical examples are discussed. A number of short sharp quiz competitions are used to maintain motivation as well as checking on the understanding. This lesson is suitable for KS3 and GCSE students (11 - 16 year olds in the UK)
Extracting aluminium
GJHeducationGJHeducation

Extracting aluminium

(0)
A fully resourced lesson, which includes differentiated worksheets, and guides the students through the process of extracting aluminium. There are close links throughout the lesson to the reactivity series and electrolysis so that the students are able to understand how the knowledge of all of these is brought together. Students will meet cryolite and recognise why this is used in the process and will finish off by writing half equations to show the products at the electrodes. This lesson has been designed for GCSE students (14 - 16 year olds in the UK)
Titration calculations
GJHeducationGJHeducation

Titration calculations

(0)
A detailed lesson which uses a step by step guide to take students through titration calculations. The lesson begins by looking at jey terminology such as the “rough” and “titre”, which are discussed and explained so that there isnt any confusion. Time is taken to go over key steps in the method, such as using the molar ratio from the equation, so that students are prepared for these if they encounter in an assessment. This lesson has been designed primarily for GCSE students (14 - 16 year olds in the UK) but is suitable for older students covering this at A-level
Graphene and the fullerenes
GJHeducationGJHeducation

Graphene and the fullerenes

(0)
A fully-resourced lesson that looks at a number of the allotropes of carbon which need to be known for GCSE Science. The lesson includes an engaging lesson presentation (40 slides) and associated worksheets. The lesson begins by recalling the definition of an allotrope. Students are then introduced to graphene and will understand how this is related to graphite and know the properties of these two materials that are shared. Time is taken to ensure that students can explain why graphene is able to conduct electricity. Moving forwards, students will meet the family of allotropes known as the fullerenes and will see some important details about a few of these. This lesson has been written for students studying GCSE (14 - 16 year olds in the UK).
Detecting gases
GJHeducationGJHeducation

Detecting gases

(0)
An engaging lesson presentation (37 slides) which gets students to test their practical skills by carrying out the four identification tests for oxygen, hydrogen, carbon dioxide and chlorine. The lesson begins by using a competition called “Guess the gas” where students have to used clues to identify the four colourless gases which will be used in the lesson. Moving forwards, students will meet the pieces of equipment that will be used in these tests. Practical instructions for each of the tests are included in the lesson so that students can produce the gas and then carry out the test. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson is suitable for both KS3 and GCSE students
The ALKANES
GJHeducationGJHeducation

The ALKANES

(0)
A fully-resourced lesson which looks at the saturated hydrocarbons known as the alkanes and focuses on their structure and reactions. The lesson includes an engaging lesson presentation (38 slides) and an associated worksheet which is differentiated. The lesson begins with the introduction of the name of this group and then a step-by-step guide is used to show students how to draw the displayed formula. Once the first four have been drawn, students are shown how to calculate the general formula for the alkenes and then challenged to do the same for the alkanes. Moving forwards, students will meet the key term, saturated, and time is taken to ensure that the meaning of this word is understood in the context of this lesson. Once they have been introduced to bromine water, students are challenged to work out what will happen when this substance is added to an alkane and they have to explain their answer. The remainder of the lesson looks at the complete and incomplete combustion of the alkanes, focusing on the different products of these reactions and specifically the problems associated with carbon monoxide. There are regular progress checks throughout the lesson to allow the students to check on their understanding.
Catalysts and the rate of reaction
GJHeducationGJHeducation

Catalysts and the rate of reaction

(0)
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson. This lesson has been designed for GCSE students.
Concentration and the rate of reaction
GJHeducationGJHeducation

Concentration and the rate of reaction

(0)
A fully-resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes a practical-based lesson presentation (19 slides) and associated worksheets containing differentiated questions. The aim of the beginning of the lesson involves getting students to understand the term, concentration, so that they are able to use it accurately in their descriptions. This is a term which is commonly wrongly used by students. Moving forwards, students will carry out a practical to collect valid results so that they can apply their knowledge of concentration to explain a trend. Certain practical skills are challenged during the lesson such as the drawing of a results table to display the results. A worksheet containing questions on the practical is differentiated so that students who need assistance are still able to access the learning. This lesson has been designed for GCSE students but can be used with KS3 students who are learning about chemical reactions.
Pure and impure substances
GJHeducationGJHeducation

Pure and impure substances

(0)
An engaging lesson presentation (39 slides) with associated differentiated worksheets that looks at they key differences between pure and impure substances and briefly explores how a mixture like an alloy can still be very useful. The lesson begins by challenging the students to recognise 4 diagrams of pure substances from a selection of 5. This will lead students to the definition of pure (in Science) which is likely to be different to what they have encountered in everyday language. The next task gets the students to draw a graph showing the melting and boiling points of pure water. This will enable them to compare the melting point against that of an impure substance and therefore recognise that this difference can be used as point to decide on purity. An example of gritting is used to explain how this change in melting point can be utilised and then the students are challenged to apply this new-found knowledge to the situation of adding salt to boiling water when making pasta. The remainder of the lesson focuses on some famous mixtures. Beginning with air, students will be able to visualise how this mixture is made of a number of gases, each with different boiling points which allows them to be separated by fractional distillation. Alloys are briefly explored so that students know why these mixtures are used for certain functions over pure metals and the summary passage for this task has been differentiated two ways so that all can access the work. Progress checks have been written into the lesson at regular intervals so that students can check their understanding and a range of quick quiz competitions are used to maintain engagement whilst introducing new terms in a fun manner. If you want to look into alloys in greater detail, then this lesson could be combined with the one named “alloys” which is also uploaded.
Bond energy calculations
GJHeducationGJHeducation

Bond energy calculations

(0)
An informative lesson presentation (24 slides), accompanied by a set of differentiated question worksheets, which together guide students through calculating energy changes in reactions and then challenges them to apply their new-found knowledge. The lesson begins by asking the students to complete a sentence which details how energy is taken in to break bonds in the reactants and given out when bonds are formed in the products. The bond energy table is then introduced so that students understand how it will be used in questions. Moving forwards, a step by step guide is used to calculate the energy change value for two reactions and students are shown how to interpret the positive or negative result as endothermic or exothermic respectively. The remainder of the lesson asks the students to apply what they have learnt to calculate the energy change for two more reactions. This question worksheet is differentiated two ways so that students who need extra assistance can still access the work. This lesson has been designed for GCSE students
Neutralisation reactions
GJHeducationGJHeducation

Neutralisation reactions

(0)
A lesson presentation (44 slides), accompanied by a question worksheet, which together looks at the reactants and products of a neutralisation reaction and challenges students to represent these reactions with equations. The lesson begins with a bit of fun as students are asked to read through a scene from the US comedy show and spot that a neutralisation reaction is hidden under the jokes. Students will use their KS3 knowledge to recall that these reactions involve acids and alkalis and moving forwards they will be introduced to a new term, base. The rest of the lesson focuses on writing word and balanced symbol equations for different neutralisation reactions. A step by step guide is used to demonstrate how to work out the name of the salt as well as writing accurate chemical formulae. Finally, students are challenged to apply their new-found knowledge and complete equations for 4 neutralisation reactions and they can assess against the displayed mark schemes. Progress checks have been written into the lesson at regular intervals so that this self-assessment is constant and any misconceptions are quickly addressed. This lesson has been written for GCSE students but could be used with younger students who are looking to extend their knowledge
Topic C1b: Elements, compounds and mixtures (Edexcel iGCSE Chemistry)
GJHeducationGJHeducation

Topic C1b: Elements, compounds and mixtures (Edexcel iGCSE Chemistry)

7 Resources
This bundle of 7 lessons covers the majority of the content in Topic C1b (Elements, compounds and mixtures) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include: Understand how to classify a substance as an element, compound and mixture Understand that a pure substance has a fixed melting and boiling point Separating mixtures by simple distillation Separating mixtures by fractional distillation Separating mixtures by filtration and crystallisation Separating mixtures by paper chromatography Interpreting and analysing chromatograms All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C1i: Electrolysis (Edexcel iGCSE Chemistry)
GJHeducationGJHeducation

Topic C1i: Electrolysis (Edexcel iGCSE Chemistry)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic C1i (Electrolysis) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include: Understand why ionic compounds conduct electricity only when molten or in aqueous solution Describe experiments to investigate electrolysis of molten compounds and aqueous solutions Write ionic half equations for the reactions at the electrodes All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic C1g: Covalent bonding (Edexcel iGCSE Chemistry)
GJHeducationGJHeducation

Topic C1g: Covalent bonding (Edexcel iGCSE Chemistry)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic C1g (Covalent bonding) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include: Know that covalent bonding involves the sharing of electrons Be able to draw dot and cross diagrams for a range of structures involving covalent bonds Describe the structure of simple covalent substances and relate this to their properties Explain why substances with giant covalent structures are solids with high melting and boiling points Explain how the structures of diamond, graphite and buckminsterfullerene affects their physical properties All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
OCR Gateway A GCSE Combined Science Chemistry Modules REVISION LESSONS
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science Chemistry Modules REVISION LESSONS

6 Resources
This bundle of 6 engaging and motivating lesson presentations and associated worksheets uses a combination of exam questions, quick tasks and quiz competitions to test the students on their knowledge of the key topics of the Chemistry modules of OCR Gateway A GCSE Combined Science specification. The knowledge of the following modules can be assessed using these lessons: C1: Particles C2: Elements, compounds and mixtures C3: Chemical reactions C4: Predicting and identifying reactions and products C5: Monitoring and controlling chemical reactions C6: Global challenges
OCR GCSE Combined Science  C2  REVISION (Elements, compounds and mixtures)
GJHeducationGJHeducation

OCR GCSE Combined Science C2 REVISION (Elements, compounds and mixtures)

(0)
A fully resourced lesson presentation (60 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C2 (Elements, compounds and mixtures) of the OCR Gateway A GCSE Combined Science specification. Relative formula mass Empirical formula Pure and impure substances Filtration and crystallisation Distillation Chromatography Electronic structure Forming ions Simple molecules Giant covalent structures Carbon Students will be engaged through the numerous activities including quiz rounds like “Take the HOTSEAT” and “SEPARATE the fact from the fiction” whilst crucially being able to recognise those areas which need further attention
OCR Gateway GCSE Science C1 REVISION (Particles)
GJHeducationGJHeducation

OCR Gateway GCSE Science C1 REVISION (Particles)

(0)
An engaging lesson presentation (48 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C1 (Particles) of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Introducing particles Chemical and physical changes Atomic structure Isotopes Developing the atomic model Students will be engaged through the numerous activities including quiz rounds like “SPOT the SCIENTIST” and “Order, Order” whilst crucially being able to recognise those areas which need further attention
OCR Gateway A GCSE Chemistry C3 (Chemical Reactions) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Chemistry C3 (Chemical Reactions) REVISION

(0)
An engaging lesson presentation (77 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C3 (Chemical reactions) of the OCR Gateway A GCSE Chemistry specification. The topics that are tested within the lesson include: Formulae of elements and molecules Formulae of ionic compounds Conservation of mass Chemical equations Half equations The mole Exothermic and endothermic reactions The pH scale Hydrogen ions and pH Electrolysis of molten salts Electrolysis of solutions Students will be engaged through the numerous activities including quiz rounds like “E Numbers” whilst crucially being able to recognise those areas which need further attention