A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A fully-resourced lesson which includes a lesson presentation (24 slides) and a worksheet which is differentiated so that students can judge their understanding of the topic of writing half equations for electrolysis and access the work accordingly. The lesson uses worked examples and helpful hints to show the students how to write half equations at both the cathode and anode. Time is taken to remind students about the rules at the electrodes when the electrolyte is in solution so that they can work out the products before writing the equations.
This lesson has been designed for GCSE students (14 - 16 years old in the UK) but could be used with older students.
This lesson looks at the homologous series of alcohols, focusing on the properties that they share and guiding students through naming and drawing displayed formula to represent them. It has been designed for GCSE students and time is taken to embed a few selected key details as dictated by the exam board specification.
The lesson begins with students meeting the formula for ethanol. This substance will provide the backbone to their understanding as they are guided through drawing the displayed formula so they can visualise how it is done and use to draw diagrams for the others. Students are shown how the general formula for the alkanes and alkenes can be worked out and then challenged to use this to work out the general formula for the alcohols. There is a brief look at the reactions with oxygen and the products that can be made depending upon whether sufficient oxygen is available or not.
This lesson revisits the topic of random and systematic errors and also challenges students on other scientific skills such as identifying variables. Students tend to find this topic confusing, so the PowerPoint and accompanying resources have been designed to support them to identify whether an error is random or systematic and then to understand what to do next.
The lesson guides the students through a series of real life examples and shows them how to spot each type of error. There is a considerable mathematical element to this lesson, including the calculation of means or missing values in a table.
The lesson concludes with a series of exam-style questions where the students have to apply their understanding of identifying errors, variables and calculating means.
A fully-resourced lesson which looks at the meaning of the rate of reaction and guides students through calculating both the mean and instantaneous rate of reaction. The lesson includes a concise lesson presentation (19 slides) and a question worksheet which is differentiated two ways.
The lesson begins by challenging the students to suggest the missing factor in the rate of reaction equation so they can learn that either the mass of a reactant or a mass of a product could be used. Links are made to practical skills as students will understand that if a product is in the gaseous form, the volume produced within a set time will enable the rate to be calculated. Worked examples are used to show the students how to calculate the mean rate of reaction and then the instantaneous using a tangent. The rest of the lesson involves collecting data from an experiment to calculate the rate of reaction. The questions associated with the practical have been differentiated so students who need assistance can still access the learning.
This lesson has been written for GCSE students
An engaging lesson presentation (39 slides) with associated differentiated worksheets that looks at they key differences between pure and impure substances and briefly explores how a mixture like an alloy can still be very useful.
The lesson begins by challenging the students to recognise 4 diagrams of pure substances from a selection of 5. This will lead students to the definition of pure (in Science) which is likely to be different to what they have encountered in everyday language. The next task gets the students to draw a graph showing the melting and boiling points of pure water. This will enable them to compare the melting point against that of an impure substance and therefore recognise that this difference can be used as point to decide on purity. An example of gritting is used to explain how this change in melting point can be utilised and then the students are challenged to apply this new-found knowledge to the situation of adding salt to boiling water when making pasta. The remainder of the lesson focuses on some famous mixtures. Beginning with air, students will be able to visualise how this mixture is made of a number of gases, each with different boiling points which allows them to be separated by fractional distillation. Alloys are briefly explored so that students know why these mixtures are used for certain functions over pure metals and the summary passage for this task has been differentiated two ways so that all can access the work. Progress checks have been written into the lesson at regular intervals so that students can check their understanding and a range of quick quiz competitions are used to maintain engagement whilst introducing new terms in a fun manner.
If you want to look into alloys in greater detail, then this lesson could be combined with the one named “alloys” which is also uploaded.
An engaging lesson presentation (42 slides) and associated worksheet that uses a combination of exam questions, understanding checks, quick tasks and a quiz competition to help the students to assess their understanding of the topics found within the Chemistry unit C5 (Energy changes) of the AQA GCSE Combined Science specification (specification point C5.5). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to use the energy change in a chemical reaction to work out if it is an endothermic or exothermic reaction.
The topics that are tested within the lesson include:
Endothermic and exothermic reactions
Reaction profiles
Calculating energy changes in reactions
Students will be engaged through the numerous activities including a summary round called “E NUMBERS” which requires them to use all of their knowledge to work out the type of reactions that are shown.
This is a fast-paced lesson that looks at how particle size affects the rate of reaction and challenges the students to carry out a practical to obtain valid results to back up the theory. It is a fully-resourced lesson that consists of an engaging lesson presentation (19 slides) and a calculation worksheet which is differentiated two ways to enable those students who find the maths hard to have a way to access the learning. Students are guided through a method of calculating the surface area and volume of the object and calculating the surface area to volume ratio. Using the answers to their calculations, they will complete a summary passage which explains why having more exposed reacting particles leads to an increased rate of reaction. Students will then carry out a practical where they have to determine which cube of jelly to use to make jelly the fastest in order to test their summary passage is valid.
This lesson has been designed for GCSE students but could be used with younger students looking at chemical reactions and investigating the factors that affect the rate.
A fast-paced lesson that looks at the key details of the different substances which are found along the pH scale. This lesson has been designed for GCSE students and to build on the foundation knowledge that they picked up at KS3. Along with the obvious Scientific knowledge associated with the lesson, both numeracy and literacy skills are challenged during the lesson. Time is taken to ensure that the meaning of pH is understood and new terms such as base are introduced, so that these are recognised when written in assessment questions. Students will recall the scale numbers associated with acidic, neutral and alkaline solutions and their knowledge will be extended through the introduction of hydrogen and hydroxide ions. A method for taking a pH reading using a pH probe is included which can be used should the teacher chose that it is required. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding.
This is a fully-resourced lesson that looks at the meaning of a limiting reactant in a chemical reaction and guides students through how to apply this to a number of calculations. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work.
The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning.
This lesson has been written for GCSE students.
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson.
This lesson has been designed for GCSE students.
An engaging lesson presentation (46 slides) which looks at the fractional distillation of crude oil and focuses on the properties of the different fractions.
The aim at the start of the lesson is to ensure that students understand that this process can be broken down into evaporation followed by condensation. Moving forwards, a fun competition is used to introduce the students to the names of some of the important fractions that are produced by this process. At the same time, they will learn the relative position that each fraction condenses on the fractionating column and will be taught that they need to know this position with relation to the other fractions. Students will learn that the fractions have differing properties depending on where they condense and they are challenged to compare fractions by viscosity, length of hydrocarbon and boiling point. There are regular progress checks throughout the lesson to allow the students to check on their understanding.
This lesson has been written for GCSE students.
A fully-resourced lesson which looks at the chemical reaction that is aerobic respiration and ensures that students can apply their knowledge to application questions which challenge them to make links to related topics. The lesson includes a practical-based lesson presentation (19 slides) and associated worksheets containing differentiated questions.
The aim of the beginning of the lesson involves getting students to understand the term, concentration, so that they are able to use it accurately in their descriptions. This is a term which is commonly wrongly used by students. Moving forwards, students will carry out a practical to collect valid results so that they can apply their knowledge of concentration to explain a trend. Certain practical skills are challenged during the lesson such as the drawing of a results table to display the results. A worksheet containing questions on the practical is differentiated so that students who need assistance are still able to access the learning.
This lesson has been designed for GCSE students but can be used with KS3 students who are learning about chemical reactions.
A practical based lesson presentation (26 slides) that investigates how increasing the temperature affects the rate of reaction and helps students to explain the trend in the results. Students can either carry out the reaction between sodium thiosulphate and hydrochloric acid or use the results which are provided. The equation to work out the rate of reaction is introduced to the students and they are challenged to plot the results on a line graph. A key term to be used in the explanation is introduced through a quick competition and then students are challenged to explain the trend
This concise lesson presentation (20 slides) guides students through the effect of changing pressure on the position of the equilibrium. The key skill to this topic involves recalling the rule of increasing pressure and being able to recognise how many moles are on each side of the reaction. For this reason, time is taken to remind the students of the meaning of the mole numbers in a reaction and working through an example together so they can see which side will be favoured. The final part of the lesson involves a game called “The PRESSURE is on” where students are in a race against the clock to balance an equation and then work out which way the equilibrium will shift when either the pressure is increased or decreased.
This lesson has been written for GCSE students.
A resourced lesson which looks at the key details of a titration to enable students to generate results which could be used in a titration calculation. The lesson includes an engaging lesson presentation (29 slides) and an associated worksheet.
The lesson begins with a spot of fun as students are challenged to read the script of a scene from Friends to identify a neutralisation reaction. Students will learn that a method called a titration can use the results of an acid-base neutralisation to work out the concentration of an unknown. Students will learn the names of the equipment involved through a quiz competition and will then be shown how to set up a table to collect the results. Key terms such as titre, rough and end-point are explained. The lesson finishes with one further round of the competition called “Take the HOTSEAT” so that the knowledge of the key terminology from today’s lesson can be checked. The lesson has been designed with regular progress checks throughout so that students can check their understanding.
This lesson has been designed for GCSE students.
A concise lesson presentation (21 slides) which uses a range of methods to allow students to discover how to draw dot and cross diagrams for covalent structures. The lesson begins by challenging the students to recall their knowledge of electronic structure to show the outer shell of two specified atoms. They will then see how it is possible for both of these atoms to get full outer shells by sharing as happens in this type of bonding. A few more examples are used to consolidate this understanding before quick competition is used to check the understanding so far. Moving forwards, a step by step guide shows students how to draw dot and cross diagrams using the same techniques as was utilised with the hulas.
This lesson has been written for GCSE students but could be used with higher ability KS3 students.
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Rates of reaction and energy changes) of the Edexcel GCSE Chemistry specification.
The specification points that are covered in this revision lesson include:
Suggest practical methods for determining the rate of a given reaction
Explain how reactions occur when particles collide and that rates of reaction are increased when the frequency and/or energy of collisions is increased
Explain the effects on rates of reaction of changes in temperature, concentration, surface area to volume ratio of a solid and pressure (on reactions involving gases) in terms of frequency and/or energy of collisions between particles
Describe a catalyst as a substance that speeds up the rate of a reaction without altering the products of the reaction, being itself unchanged chemically and in mass at the end of the reaction
Explain how the addition of a catalyst increases the rate of a reaction in terms of activation energy
Describe an exothermic change or reaction as one in which heat energy is given out
Describe an endothermic change or reaction as one in which heat energy is taken in
Recall that the breaking of bonds is endothermic and the making of bonds is exothermic
Recall that the overall heat energy change for a reaction is: a exothermic if more heat energy is released in forming bonds in the products than is required in breaking bonds in the reactants b endothermic if less heat energy is released in forming bonds in the products than is required in breaking bonds in the reactants
Calculate the energy change in a reaction given the energies of bonds (in kJ mol–1)
Explain the term activation energy
Draw and label reaction profiles for endothermic and exothermic reactions, identifying activation energy
The students will thoroughly enjoy the range of activities, which includes a quiz competition called “E NUMBERS” where they have to recognise the differences between endothermic and exothermic reactions whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
A quick, concise lesson presentation (15 slides) which together with a question worksheet focuses on ensuring that students can define an isotope and pick these substances out from a selection of substances. The lesson begins by looking at the number of sub-atomic particles in an aluminium atom so that students can recall what is shown by the atomic and mass numbers. This will enable students to calculate the number of protons, neutrons and electrons in three given isotopes and as a result, complete a definition of these substances. The remainder of this short lesson involves 4 application questions where students either have to recognise isotopes from a table or from a diagram and also are asked to write out the formula of an isotope. Ideally this lesson will be taught in conjunction with a lesson on atomic structure.
This lesson explores how the temperature affects the position of equilibrium in a reversible reaction. This can be a difficult topic for students to understand and therefore the aim has been on the key details.
The lesson begins by challenging the students to recall the rules of a dynamic equilibrium in order to recognise how if the equilibrium position changes then so do the concentrations. Links are made during the lesson to related topics such as endothermic and exothermic reactions and some time is taken to go back over calculating energy changes so that the type of reaction can be determined. The forward reaction in the Haber process is used as the example so students can see how an increase in temperature in this exothermic reaction would lead to a decrease in the yield of ammonia. Students are then challenged to use this example to explain how a decrease in temperature would affect the production of methanol. This worksheet is differentiated so students who need extra assistance can still access the learning.
This lesson has been written for GCSE students.
This lesson has been written for GCSE students, with the main focus being to introduce reversible reactions, show them how to represent them in both word and symbol equations, and to look at some well-known examples. Related topics such as the position of the equilibrium and endothermic and exothermic reactions are briefly mentioned so that students can recognise the potential crossover between topics. Some time is taken during the lesson to challenge the students to write a balanced symbol equation having been given a description of a reversible reaction. This task is differentiated with an assistance sheet so that all are able to access the learning. There are a number of these progress checks in this short lesson so that students can assess their understanding on a regular basis. Students will learn that the reaction in one direction will be exothermic and why this matters in terms of temperature and the equilibrium position. Increasing pressure and the number of moles is also discussed and an answer explained.