Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1120k+Views

1927k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
AQA A-level Biology Topic 7 REVISION (Genetics, populations, evolution and ecosystems)
GJHeducationGJHeducation

AQA A-level Biology Topic 7 REVISION (Genetics, populations, evolution and ecosystems)

(0)
This is a fully-resourced REVISION resource that consists of an engaging PowerPoint (127 slides) and associated worksheets that challenge the students on their knowledge of topic 7 (Genetics, populations, evolution and ecosystems) of the AQA A-level Biology specification. A wide range of activities have been written into this resource to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to cover as much of the content as possible, but the following sub-topics have been given particular attention: Genetic terminology Using genetic diagrams to calculate phenotypic ratios and percentages for the inheritance of a single gene Applying the Hardy-Weinberg principle Sex-linkage Codominance, multiple alleles and interpreting genetic trees Types of variation Ecological terminology Dihybrid inheritance Using the chi-squared test to determine significance Epistasis Succession Sampling to estimate populations and consider distribution The mathematic elements of this topic and specification are challenged throughout the resource and useful hints given to enable the students to pick up vital marks from questions on this topic. Due to the size of this resource, teachers may choose to use it over the course of a number of lessons and it is suitable for use at the end of topic 7, in the lead up to the mocks or in the lead up to the actual A-level exams.
Chi-squared test (AQA A-level Biology)
GJHeducationGJHeducation

Chi-squared test (AQA A-level Biology)

(1)
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated task worksheets that have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use the test to compare the goodness of fit between the observed phenotypic ratios and expected ratios. The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty. This is the final lesson of topic 7.1 (inheritance) and links are made throughout the lesson to earlier parts of this topic such as dihybrid inheritance as well as to earlier topics such as meiosis.
PCR (AQA A-level Biology)
GJHeducationGJHeducation

PCR (AQA A-level Biology)

(0)
This lesson looks at the use of the polymerase chain reaction (PCR) as an in vitro method to amplify DNA fragments as part of the recombinant DNA technology process. The clear PowerPoint has been designed to cover the second part of point 8.4.1 of the AQA A-level Biology specification. A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss the identity of the enzyme involved and to recall the action of this enzyme. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so the next part of this lesson looks at these particular temperatures so the important parts of each of the steps can be understood. Time is taken to examine the key points in detail, such as the specific DNA polymerase that is used and how it is not denatured at the high temperature as well as the involvement of the primers.
AQA GCSE Combined Science Unit P4 (Atomic Structure) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science Unit P4 (Atomic Structure) REVISION

(0)
An engaging lesson presentation (48 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P4 (Atomic structure) of the AQA GCSE Combined Science specification (specification point P6.4). The topics that are tested within the lesson include: The structure of an atom Isotopes Radioactive decay and nuclear radiation Nuclear equations Half-lives Students will be engaged through the numerous activities including quiz rounds like “It’s as easy as ABG” and “ALPHA or BETA” whilst crucially being able to recognise those areas which need further attention
ELISA test (AQA A-level Biology)
GJHeducationGJHeducation

ELISA test (AQA A-level Biology)

(1)
This fully-resourced lesson describes how antibodies are used in the enzyme-linked immunosorbent assay (ELISA) test. The PowerPoint and accompanying resources are part of the last lesson in a series of 7 which have been designed to cover the details within point 2.4 of the AQA A-level specification. As the last lesson in this sub-topic, prior knowledge checks are included throughout the lesson which challenge the students on their knowledge of antibodies, immunity and protein structure. The lesson begins by challenging the students to use the details of a poster to recognise that individuals who have recovered from COVID-19 could donate plasma and the antibodies be infused into newly infected individuals. They are then expected to answer a series of exam-style questions where they have to describe the structure of these specific antibodies, recognise this as artificial, passive immunity and describe the potential problems should the virus mutate and the shape of its antigens change. This leads into the introduction of the use of antibodies in other ways, namely the ELISA test. The methodology of this test has been divided into four key steps which students will consider one at a time and then answer further questions about key details such as the immobilisation of the antigen and the removal of proteins and antibodies that have not bound by the washing with the detergent after each step. The lesson focuses on the use of this test for medical diagnosis but other uses such as plant pathology and the detection of allergens is briefly introduced at the end of the lesson.
Module 4.1.1: Communicable diseases, disease prevention and the immune system (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4.1.1: Communicable diseases, disease prevention and the immune system (OCR A-level Biology A)

8 Resources
This lesson bundle contains 8 detailed lesson PowerPoints and their accompanying resources and all of them have been planned at length to engage and motivate the students whilst covering the biological content of module 4.1.1 of the OCR A-level Biology A specification. The wide range of tasks which are contained with each of these lessons cover the following specification points: The different types of pathogen that can cause communicable diseases in plants and animals The means of transmission of animal and plant communicable pathogens The primary non-specific defences against pathogens in animals The structure and mode of action of phagocytes The structure, different roles and modes of action of B and T lymphocytes in the specific immune response The primary and secondary immune responses The structure and general functions of antibodies An outline of the action of opsonins, agglutinins and anti-toxins The difference between active and passive immunity, and between natural and artificial immunity Autoimmune diseases The principles of vaccination and the role of vaccination programmes in the prevention of epidemics If you would like to sample the quality of the lessons in this bundle, then download the “Transmission of animal and plant pathogens” and “immunity & vaccinations” lessons as these have been uploaded for free
Formation of ions (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Formation of ions (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson describes an ion as an atom with a positive or negative charge, and explains how cations and anions are formed in ionic compounds. The lesson PowerPoint and accompanying worksheet have been designed to cover points 1.22 - 1.24 of the Edexcel GCSE Chemistry specification and also covers the same points on the Combined Science course. The first part of the lesson focuses on atoms and specifically on getting students to recall that they contain the same number of protons and electrons and this is why they have no overall charge. By ensuring that they are confident with this fact, they will be able to understand why ions have a charge. Students will learn that ions have full outer shells of electrons and this change in the number of this sub-atomic particle leads to the charge. They are shown examples with aluminium and oxide ions and then are challenged to apply this new-found knowledge to a task where they have to explain how group 1, 2, 5 and 7 atoms become ions. The final part of the lesson looks at how ion knowledge can be assessed in a question as they have to recognise the electron configuration of one and describe how many sub-atomic particles are found in different examples. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but could be used with higher ability KS3 students who are looking to extend their knowledge past basic atomic structure
Topics 7 & 8: Transport in plants & mammals (CIE A-level Biology)
GJHeducationGJHeducation

Topics 7 & 8: Transport in plants & mammals (CIE A-level Biology)

11 Resources
This bundle contains 11 fully-resourced lessons which will engage and motivate the students whilst covering the following specification points in topics 7 and 8 of the CIE A-level Biology specification: TOPIC 7 The structure of xylem vessel elements, phloem sieve tube elements and companion cells The relationship between the structure and function of xylem vessel elements, phloem sieve tube elements and companion cells Explain how hydrogen bonding of water molecules is involved with the movement in the xylem by cohesion-tension in transpiration pull and adhesion to cell walls The pathways and mechanisms by which water and mineral ions are transported from the soil to the xylem and from roots to leaves Assimilates move between sources and sinks between phloem sieve tubes The mechanism by which sucrose is loaded into the phloem The mass flow of phloem sap down a hydrostatic pressure gradient TOPIC 8 The double, closed circulatory system of a mammal The relationship between the structure and function of arteries, veins and capillaries The role of haemoglobin in carrying oxygen and carbon dioxide The significance of the oxygen dissociation curve of adult haemoglobin at different carbon dioxide concentrations The external and internal structure of the heart The cardiac cycle The role of the SAN, AVN and Purkyne tissue in the initiation and conduction of the heart action The lesson PowerPoints and accompanying resources contain a wide range of tasks which include exam-style questions with mark schemes, discussion points and quiz competitions that will check on current understanding as well as making links to previously covered topics.
Standard deviation & the Student's t-test (OCR A-level Biology A)
GJHeducationGJHeducation

Standard deviation & the Student's t-test (OCR A-level Biology A)

(0)
This lesson describes how to calculate the standard deviation to measure the spread of a set of data and to compare means using the t-test. The detailed PowerPoint and accompanying resources have been designed to cover the part of point 4.2.2 (f) of the OCR A-level Biology A specification that includes these two statistical tests. A step by step guide walks the students through each stage of the calculation of the standard deviation and gets them to complete a worked example with the class before applying their knowledge to another set of data. This data looks at the birth weights of humans on one day in the UK and this is used again later in the lesson to compare against the birth weights of babies in South Asia when using the student’s t-test. The null hypothesis is introduced and students will learn to accept or reject this based upon a comparison of their value against one taken from the table based on the degrees of freedom.
Transcription factors & the lac operon (OCR A-level Biology)
GJHeducationGJHeducation

Transcription factors & the lac operon (OCR A-level Biology)

(0)
This fully-resourced lesson describes the regulatory mechanisms that control gene expression at a transcriptional level. The detailed PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification which states that the students knowledge should include the lac operon and examples of transcription factors in eukaryotes. . This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in module 2.1.3, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.
Module 3: Exchange and transport (OCR A-level Biology A)
GJHeducationGJHeducation

Module 3: Exchange and transport (OCR A-level Biology A)

18 Resources
This bundle contains 18 detailed and engaging lessons which cover the following specification points in module 3 (Exchange and transport) of the OCR A-level Biology A specification: 3.1.1: Exchange surfaces The need for specialised exchange surfaces The features of an efficient exchange surface The structures and functions of the components of the mammalian gaseous exchange system The mechanism of ventilation in mammals The mechanisms of ventilation and gas exchange in bony fish and insects 3.1.2: Transport in animals The double, closed circulatory system in mammals The structure and functions of arteries, arterioles, capillaries, venules and veins The formation of tissue fluid from plasma The external and internal structure of the heart The cardiac cycle How heart action is initiated and coordinated The use and interpretation of ECG traces The role of haemoglobin in transporting oxygen and carbon dioxide The oxygen dissociation curve for foetal and adult haemoglobin 3.1.3: Transport in plants The structure and function of the vascular systems in the roots, stems and leaves The transport of water into the plant, through the plant and to the air surrounding the leaves The mechanism of translocation As well as the detailed A-level Biology content of the PowerPoint slides, the resources contain a wide range of tasks including guided discussion points, exam-style questions and quiz competitions which will engage and motivate the students
AQA A-level Biology Topic 1 REVISION (Biological molecules)
GJHeducationGJHeducation

AQA A-level Biology Topic 1 REVISION (Biological molecules)

(1)
A highly engaging lesson presentation (74 slides) and accompanying worksheets that uses exam questions (with explained answers), quick tasks and quiz competitions to allow students to assess their understanding of the topic of Biological molecules (Topic 3.1). Students will have fun whilst recognising those areas of the specification which need further attention.
AQA GCSE Combined Science P1 (Energy) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science P1 (Energy) REVISION

(0)
An engaging lesson presentation (41 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P1 (Energy) of the AQA GCSE Combined Science specification (specification unit P6.1). The topics that are tested within the lesson include: Energy stores and systems Changes in energy Efficiency Students will be engaged through the numerous activities including quiz rounds like “ERRORS with the equation calculations” whilst crucially being able to recognise those areas which need further attention
Xylem and Phloem (GCSE)
GJHeducationGJHeducation

Xylem and Phloem (GCSE)

(1)
This is a fully-resourced lesson that looks at the functional and structural differences between the transport tissues in a plant, the xylem and phloem. The lesson includes an engaging lesson presentation (41 slides), which includes numerous student-led tasks, progress checks and quick competitions and two question worksheets, one of which is a differentiated version to enable those students who are finding this topic difficult to still be able to access the learning. The lesson begins with the introduction of the two tissues as well as a brief introduction to the substances which they each carry. The next part of the lesson focuses on the xylem cells and the resulting xylem vessel, and key terms such as lignin are brought into the lesson so that students can understand how these cells are waterproofed, which causes them to decay and form hollow tubes. Having met a lot of information, students are challenged to act like an examiner to form a table based question to compare the xylem against the phloem where they have to come up with features which could be compared against. This table will form the backbone of the lesson and students will use it later in the lesson when they have to write summary passages about each of the tissues. Moving forwards, a quick competition is used to enable the students to meet the names of the cells that form the phloem tissue, the sieve tube elements and the companion cells. Students will see how they are involved in the functioning of the phloem and questions are posed which relate to other topics such as the involvement of mitochondria wherever active transport occurs. Progress checks like this are found at regular intervals throughout the lesson so that students can constantly assess their understanding. This lesson has been designed for GCSE students. If you are looking to teach about these tissues but to a higher standard, you could use my uploaded alternative called Xylem and Phloem (A-level)
Edexcel GCSE Biology Topic 5 REVISION (Health, disease and the development of medicines)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 5 REVISION (Health, disease and the development of medicines)

(2)
This is a fully-resourced REVISION lesson that consists of a detailed and engaging PowerPoint (86 slides) and associated worksheets that challenge the students on their knowledge of the content of Topic 5 (Health, disease and the development of medicines) of the Edexcel GCSE Biology specification. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to include as much which of the content from topic 5, but the following sub-topics have been given particular attention: Identification of bacterial, fungal and viral diseases in animals and plants The treatment of bacterial infections The reduction and prevention of the spread of pathogens The body’s response to immunisation The physical defences of humans and plants The risk factors of CHD and possible treatments BMI The production and use of monoclonal antibodies This lesson can be used at numerous points over the duration of the course, as an end of topic revision aid, in the lead up to the mocks or in the lead up to the actual GCSE exams.
Pyrosequencing
GJHeducationGJHeducation

Pyrosequencing

(0)
A detailed lesson presentation (37 slides) and associated worksheets that guide students through the DNA sequencing method called pyrosequencing. The lesson focusses on the numerous enzymes and substrates which are involved in the cascade of events which eventually leads to the production of light when the conversion from luciferin to oxyluciferin occurs. A step by step guide is used to show the students how these events occur and the different outcomes are explored. There are regular progress checks throughout the lesson so that students can assess their understanding of this topic and the links to similar topics. This lesson has been designed for A-level students and above
OCR GCSE Biology Module B5 REVISION
GJHeducationGJHeducation

OCR GCSE Biology Module B5 REVISION

(0)
An engaging lesson presentation (61 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B5 (Genes, inheritance and selection) of the OCR Gateway A GCSE Biology specification The topics that are tested within the lesson include: Sexual and asexual reproduction Meiosis Dominant and recessive alleles Genetic crosses The history of genetics Natural selection Classification systems Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" and “Which Scientist is hidden?” whilst crucially being able to recognise those areas which need further attention
Immobilised enzymes
GJHeducationGJHeducation

Immobilised enzymes

(1)
An informative and engaging lesson (46 slides) that looks at the topic of immobilised enzymes and focusses on ensuring that students understand this topic around three main ideas. By the end of the lesson, students will be able to explain why immobilised enzymes are used, describe the different methods by which they are produced and describe some of their uses in biotechnology. Time is taken throughout the lesson to make sure that students understand the disadvantages associated with this process and that they are able to explain the specific limitations of each method. This lesson has been designed for students studying A-level Biology
Sex determination
GJHeducationGJHeducation

Sex determination

(2)
A fully-resourced lesson which looks at how the sex chromosomes which determine gender are inherited in humans. The lesson includes an engaging lesson presentation (24 slides) and an associated worksheet containing knowledge recall and application questions. The lesson begins with a range of different quiz competitions which enable the students to get the answers of X, Y, zygote and 23. With a little bit of assistance, students are challenged to bring these terms together to complete a passage about how the inheritance of either an XX genotype will lead to a female or a XY genotype will lead to a male. Moving forwards, students are told how they will be expected to be able to construct a genetic diagram to show the inheritance of gender and so are given a quick recap before being challenged to do just that. The last part of the lesson gets students to discuss and consider whether females or males are responsible for determining sex in terms of their gametes. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students primarily but the content is suitable for both KS3 and even A-level students
Edexcel A-level Biology Topic 4 REVISION (Biodiversity and Natural resources)
GJHeducationGJHeducation

Edexcel A-level Biology Topic 4 REVISION (Biodiversity and Natural resources)

(0)
This is a fully-resourced REVISION lesson that challenges the students on their knowledge of the content found in TOPIC 4 (Biodiversity and Natural resources) of the Edexcel A-level Biology (Salters Nuffield) specification. The lesson contains an engaging PowerPoint (104 slides) and accompanying worksheets that use a range of exam questions, differentiated tasks and quiz competitions to motivate the students whilst they evaluate their knowledge of the different sub-topics. The lesson has been designed to cover as much of the topic 4 specification as possible, but the following sub-topics have been given particular attention: Three-domain classification The features of the kingdoms Evolutionary relationships Behavioural, anatomical and physiological adaptations Glycosidic bonds The structure and function of cellulose The ultrastructure of plant cells Calculating the index of diversity and the heterozygosity index Applying the Hardy-Weinberg principle to calculate allele frequencies This lesson is suitable for revision at the end of the topic, in the lead up to the mocks or in the lead up to the actual A-level exams as topic 4 is assessed on both Paper 1 and Paper 2.