Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Osmosis and Acceleration REVISION (AQA GCSE)
GJHeducationGJHeducation

Osmosis and Acceleration REVISION (AQA GCSE)

(0)
This revision lesson challenges students to explain the results of an osmosis investigation and to calculate accelerations using 2 equations. The PowerPoint and accompanying resources have been designed to check on the understanding of these two topics as detailed in the AQA GCSE biology, physics and combined specifications. The lesson contains a range of tasks including worked examples, exam questions and quizzes which will remind students that water molecules move across partially permeable membranes by osmosis and how changes in the mass of a potato can be used to compare water concentrations in the potato and solution. Students will also recall that acceleration can be calculated from velocity-time graphs using change in velocity/time as well as through the use of F=ma.
Properties of waves REVISION (AQA GCSE)
GJHeducationGJHeducation

Properties of waves REVISION (AQA GCSE)

(0)
This revision lesson focuses on the properties of waves and the process of refraction as detailed in topic 6 of the AQA physics and combined specifications. Each task in the PowerPoint and accompanying resources challenges the students on their understanding of the key terms frequency, period, wavelength, amplitude, transverse and longitudinal, and reminds them how to answer refraction questions by using explanations that involve density, speed and the change in direction of the light wave.
Control of blood glucose REVISION (GCSE)
GJHeducationGJHeducation

Control of blood glucose REVISION (GCSE)

(0)
This engaging revision lesson challenges students on their understanding of the homeostatic control system that regulates blood glucose concentration. The PowerPoint and accompanying resources have been designed to check on the understanding of the details in specification point 5.3.2 of the AQA biology and combined science specifications. A common mistake in this topic is that students confuse glycogen with glucagon and use them incorrectly so time is spent to ensure that students recognise the difference between the complex carbohydrate and the hormone. In addition to challenging the students on their knowledge of this control system, the following linked topics are also challenged: key biological terms (beginning with G) the digestive system structures in a control system
Communicable diseases REVISION (AQA Combined)
GJHeducationGJHeducation

Communicable diseases REVISION (AQA Combined)

(0)
This engaging revision lesson challenges the students on their knowledge of the communicable diseases topic as detailed in the AQA GCSE combined science specification. The PowerPoint and accompanying resources include a range of tasks that enable the students to assess their knowledge of the 7 viral, bacterial, fungal and protist infections that are listed in topic B3.1. This lesson has been designed to be used as a final revision resource as the GCSE exams approach, or as part of revision for an end of topic test.
AQA GCSE Combined Physics FINAL REVISION
GJHeducationGJHeducation

AQA GCSE Combined Physics FINAL REVISION

(0)
This lesson covers a large number of the key topics from the AQA GCSE Combined Physics course in the final weeks before the GCSE examinations. The extensive PowerPoint and accompanying resources use a range of activities and tasks including exam questions and quizzes to challenge the students on their knowledge of the following topics and skills: Units and converting between units Answering calculation questions (with 1 or 2 equations) Newton’s 2nd and 3rd laws of motion Resultant forces Conservation of energy Efficiency and reducing wasted energy Conservation of momentum Scalar and vector quantities Motions on a velocity-time graph The relationship between force and the extension of a spring Setting up electrical circuits Current, potential difference and resistance in series and parallel circuits The properties of ionising radiation Calculating half-lives Constructing decay equations The properties of waves Refraction This resource is likely to take 4 or more lessons to cover all of the content.
Farming and conservation (AQA A-level Biology)
GJHeducationGJHeducation

Farming and conservation (AQA A-level Biology)

(0)
This lesson explores how certain farming methods reduce biodiversity and considers the importance of a balance between conservation and farming. The PowerPoint and accompanying resources are the second in a series of 2 lessons which cover the detail in point 4.6 (biodiversity within a community) of the AQA A-level biology specification. The lesson begins by challenging the students to use the % change formula to calculate the predicted population in the UK by mid 2030. This increase to almost 70 million will lead into the recognition that farmers are under constant pressure to grow and provide enough food to feed this ever-growing population. A series of tasks and discussions will consider farming methods such as continuous monoculture and herbicides and insecticides which reduce biodiversity. This introduces conservation as active management to prevent the loss of biodiversity and several methods including the CSS and buffer strips are explored to encourage the students to think about the aims of these strategies. The other lesson covering specification point 4.6 is uploaded and named “biodiversity within a community”.
Autonomic nervous system (AQA GCSE Psychology)
GJHeducationGJHeducation

Autonomic nervous system (AQA GCSE Psychology)

(0)
This lesson describes the actions of the sympathetic and parasympathetic divisions of the ANS. The PowerPoint and accompanying resources are part of the 8th lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. The students were introduced to the autonomic nervous system (ANS) in the 1st lesson in this topic, so this lesson has been designed to deepen and further their understanding of the actions of this system. Students will come to understand that the sympathetic division is most active during times of stress whilst the parasympathetic division is most active during times of sleep and relaxation. Through a series of tasks including a fun quiz round, they will discover the actions of the two divisions and then be challenged to apply their understanding. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The autonomic nervous system #9 The fight or flight response #10 The somatic nervous system #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Sensory and motor neurones (AQA GCSE Psychology)
GJHeducationGJHeducation

Sensory and motor neurones (AQA GCSE Psychology)

(0)
This lesson describes the structure and function of the sensory and motor neurones. The PowerPoint and accompanying resources are part of the 4th lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. This lesson focuses on the functions and the structural similarities and differences between a sensory and motor neurone. Students will be introduced to key structures like the cell body, axon and dendrites and learn how they differ in these two peripheral nervous system neurones. They will also learn about the myelin sheath and will be challenged to use a data table to recognise that myelinated neurones conduct impulses faster than unmyelinated neurones. There is a brief explanation about the jumping action of the impulse between the nodes of Ranvier to enable this faster conduction. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
The cerebellum (AQA GCSE Psychology)
GJHeducationGJHeducation

The cerebellum (AQA GCSE Psychology)

(0)
This concise lesson describes the function of the cerebellum. The PowerPoint and accompanying resources are part of the 3rd lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. In the previous lesson, the students were introduced to the function of the lobes of the cerebral cortex and so the initial task challenges them to use that knowledge to learn the name of the cerebellum. The students will be able to locate this structure on a diagram. Moving forwards, the function of this brain structure as controlling balance, posture and fine movement is introduced and real life examples are given. As this is the last lesson on brain structure, the final part of the lesson uses a BLOCKBUSTERS quiz to challenge their understanding of the content of the first 3 lessons of this topic. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Cerebral lobes (AQA GCSE Psychology)
GJHeducationGJHeducation

Cerebral lobes (AQA GCSE Psychology)

(0)
This lesson describes the structure and localised function of the frontal, occipital, temporal and parietal lobes of the cerebrum. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. In the previous lesson, the students were introduced to the cerebrum as two hemispheres connected by the corpus callosum. This lesson builds on this by introducing the cerebral cortex as the outer layer which is divided into four lobes in each hemisphere. A series of quizzes are used throughout the lesson to introduce key terms in an engaging and (hopefully) memorable way, and through one quiz, the students will discover the names of the 4 lobes and recognise where they are located. Moving forward, students will learn about the function of each lobe, including the localised function of the motor, somatosensory, visual, auditory, Broca’s and Wernicke’s areas. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Organisation of the nervous system (AQA GCSE Psychology)
GJHeducationGJHeducation

Organisation of the nervous system (AQA GCSE Psychology)

(0)
This lesson focuses on the organisation of the nervous system into the CNS and the several divisions of the PNS. The PowerPoint and accompanying resource are part of the 1st lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. This lesson has been designed to act as an introduction to the topic to allow students to understand how the brain and spinal cord (as part of the CNS) and the SNS and ANS (as part of the PNS) fit into the organisation of the system. The functions of each part are briefly introduced to give an understanding that can then be built upon in future lessons in the topic. The students will learn that the main part of the brain is the cerebrum and that this organ is divided into hemispheres. They’ll learn that the brain is connected to the other part of the CNS, the spinal cord, by the brain stem, and that these nerves are responsible for conducting impulses between the brain and the rest of the body. The differences between the somatic and autonomic nervous systems are introduced before a worksheet task challenges the students to recognise which responses are brought about by the SNS and which by the ANS. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Populations in ecosystems (AQA A-level Biology)
GJHeducationGJHeducation

Populations in ecosystems (AQA A-level Biology)

(1)
This lesson focuses on the key terms associated with ecosystems and describes how populations are affected by a range of factors. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 4 lessons that cover the details of point 7.4 of the AQA A-level Biology specification As shown in the cover image, a modified version of the quiz competition BLOCKBUSTERS runs throughout the lesson and this introduces new terms as well as challenging students to recall key terms that were encountered in previous topics. These include population, ecosystems, competition, niche, abiotic factors and carrying capacity. Each time a term is met, time is taken to describe its meaning and to explain its relevance and context in this topic of populations in ecosystems. Exam-style questions are also used to challenge the students to apply their understanding and displayed mark schemes allow them to assess their progress. Prior knowledge checks interspersed within the lesson which check on topics such as the nitrogen cycle, adaptations and the biological classification of a species
Investigating the distribution and abundance of organisms (OCR GCSE Biology)
GJHeducationGJHeducation

Investigating the distribution and abundance of organisms (OCR GCSE Biology)

(0)
This lesson describes how to investigate the distribution and abundance of organisms and how to estimate the numbers of a species in a habitat. The PowerPoint and accompanying resources are part of the first lesson in a series of two lessons which have been designed to cover the details of point B6.1a of the OCR GCSE Biology specification. This first lesson focuses on the use of a quadrat to estimate population size as well as belt transects to consider distribution. Step by step guides are used throughout the lesson to model the workings required in the calculations. This includes the use of a 1 metre squared quadrat as well as other areas. Once a method has been modelled, the students are challenged with a series of exam questions and mark schemes are embedded into the PowerPoint to allow the students to self-assess.
Speed and velocity (Edexcel GCSE Physics & Combined Science)
GJHeducationGJHeducation

Speed and velocity (Edexcel GCSE Physics & Combined Science)

(0)
This lesson explains that velocity is speed in a stated direction and then describes how to use the distance and time to calculate speed. The PowerPoint and accompanying resources have been designed to cover points 2.5 & 2.6 of the Edexcel GCSE Physics & Combined Science specifications. The lesson begins with a prior knowledge check, where the students are challenged to use their understanding of the last lesson on scalar and vector quantities to complete a definition about velocity. This vector quantity is involved in the calculation of acceleration, momentum and in an equation of motion and this is briefly introduced to the students. Moving forwards, they are challenged to recall the equation to calculate speed that should have been met at KS3 as well as in Maths. The remainder of the lesson focuses on the use of this equation as well as rearrangements to change the subject. A series of step by step guides are used to model the workings required in these calculations and then the students have to apply their understanding to a series of exam questions. Mark schemes for each of the questions are embedded in the PowerPoint and the question worksheet has been differentiated two ways to provide assistance to students who are finding it difficult.
Scalar & vector quantities (Edexcel GCSE Physics & Combined Science)
GJHeducationGJHeducation

Scalar & vector quantities (Edexcel GCSE Physics & Combined Science)

(0)
This lesson describes the key difference between scalar and vector quantities and introduces examples of physical factors that fit into each group. The PowerPoint has been designed to cover points 2.1 - 2.4 of the Edexcel GCSE Physics and Combined Science specifications. The lesson begins with an introduction of the fact that some quantities are scalar and some are vector. A quick competition is used to introduce the key term, magnitude, and students will learn that scalar quantities such as speed have a size but are missing something else. A guided discussion period then challenges them to consider what that missing element might be, and this leads into the completion of the scalar definition. The next task then challenges the students to use this completed definition to write a similar one for a vector quantity. They will learn that velocity is a vector due to its magnitude and specific direction and then a series of exam questions are used to challenge their current understanding in terms of changes in speed and velocity at a crossroads. The mark scheme for each of the questions is embedded into the PowerPoint. The remainder of the lesson uses another competition to introduce acceleration, momentum, energy, force, mass and weight as scalar or vector quantities and the students are challenged one final time as they have to explain why weight is an example of a vector quantity.
Genetic inheritance (AQA GCSE Combined Science)
GJHeducationGJHeducation

Genetic inheritance (AQA GCSE Combined Science)

(0)
This lesson introduces and explains the meaning of 11 key terms associated with the genetic inheritance topic. The PowerPoint and accompanying resources have been designed to cover point 6.1.6 of the AQA GCSE Combined Science specification and include explanations of genome, chromosome, gene, allele, genotype, homozygous, heterozygous, phenotype, dominant, recessive and gamete. The key term, genome, was met earlier in topic 6 so the lesson begins with a knowledge retrieval with the definition for this term. As the genome is the entire DNA of an organism, the next task challenges the students to identify three errors in a passage about DNA. This challenges their recall of the structure of this chemical as a double helix, its location in an eukaryotic cell in the nucleus and an understanding that the gene codes for the sequence of amino acids in a specific protein. This leads into discussions about chromosomes and genes and time is taken to explain that homologous chromosomes have the same genes at the exact same gene loci. The students will learn that alternative forms of the gene (alleles) can be found at these loci and that these structures explain the differences in inherited characteristics. Moving forwards, the main section of the lesson describes the link between the dominant and recessive alleles, homozygous and heterozygous genotypes, and the physical expression as the phenotype. The final key term is gamete, and the students are challenged to recognise a definition for this term using their knowledge of meiosis. Two progress and understanding checks complete the lesson and check on the students’ ability to recognise and write definitions for these 11 terms and to use them accurately in a written description
Genetic inheritance (AQA GCSE Biology)
GJHeducationGJHeducation

Genetic inheritance (AQA GCSE Biology)

(0)
This lesson explains the meaning of 11 key terms associated with the genetic inheritance topic and challenges the students to use them in context. The PowerPoint and accompanying resources have been designed to cover point 6.1.6 of the AQA GCSE Biology specification and include explanations of genome, chromosome, gene, allele, genotype, homozygous, heterozygous, phenotype, dominant, recessive and gamete. The key term, genome, was met earlier in topic 6 so the lesson begins with a knowledge retrieval with the definition for this term. As the genome is the entire DNA of an organism, the next task challenges the students to identify three errors in a passage about DNA. This leads into discussions about chromosomes and genes and time is taken to explain that homologous chromosomes have the same genes at the exact same gene loci. The students will learn that alternative forms of the gene (alleles) can be found at these loci and that these structures explain the differences in inherited characteristics. Moving forwards, the main section of the lesson describes the link between the dominant and recessive alleles, homozygous and heterozygous genotypes, and the physical expression as the phenotype. The final key term is gamete, and the students are challenged to recognise a definition for this term using their knowledge of meiosis. Two progress and understanding checks complete the lesson and check on the students’ ability to recognise and write definitions for these 11 terms and to use them accurately in a written description
Features of the alveoli (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Features of the alveoli (Edexcel GCSE Biology & Combined Science)

(0)
This lesson describes how the alveoli are adapted for gas exchange by diffusion between the air in the lungs and the blood capillaries. The PowerPoint and accompanying resource are part of the second lesson in a series of 2 which have been designed to cover the content of point 8.2 & 8.3 of the Edexcel GCSE Biology and Combined Science specifications. During the 1st lesson in this series, the students were shown how to calculate the surface area to volume ratio and so this lesson begins by challenging them to recall that the larger the organism, the smaller the ratio. This is done through the PLAY YOUR CARDS RIGHT format as shown in the cover picture, and leads into the key idea that complex multicellular organisms like humans have developed a range of different adaptations to increase this ratio at their exchange surfaces. Moving forwards, time is taken to consider and discuss how the following adaptations of the alveoli affect the rate of diffusion: large surface area lining of the alveoli consisting of a single layer of flattened cells maintenance of a steep concentration gradient Each feature is related to diffusion and current understanding and prior knowledge checks are used to allow the students to assess their progress and to challenge them to make links to other topics of the course. All exam questions have mark schemes embedded into the PowerPoint
Transcription (Edexcel GCSE Biology)
GJHeducationGJHeducation

Transcription (Edexcel GCSE Biology)

(0)
This lesson describes the key steps involved in transcription, the 1st stage of protein synthesis. The PowerPoint and accompanying resource are part of the first lesson in a series of 2 lessons which have been designed to cover the content of point 3.8 of the Edexcel GCSE Biology specification. According to the specification, the students are expected to know this process in considerable detail, and the lesson has been planned to reflect this. In a previous lesson in topic 3, the students were introduced to the definition of a gene as a section of a DNA molecule that codes for the sequence of amino acids in a protein. They will learn that this represents coding DNA, so time is then taken to explain that not all DNA codes for proteins and that there are sections of non-coding DNA located in front and behind each gene. This is vital information as it leads into the start of the process, where the binding of RNA polymerase to a section of non-coding DNA located in front of the gene is the trigger for the start of transcription of that particular gene. Moving forwards, a step by step guide describes the key steps which include the lining up of the RNA nucleotides against the exposed bases and the formation of mRNA through the reactions catalysed by RNA polymerase. Students are given key details of RNA nucleotides, specifically the inclusion of uracil bases, and an understanding check challenges them to determine the sequence of RNA bases that will line up against a template strand. These current understanding checks along with prior knowledge checks are found throughout the lesson to allow the students to assess their progress and to challenge them to make links to previous lessons.
Surface area to volume ratio (Edexcel GCSE Biology & Combined Science)
GJHeducationGJHeducation

Surface area to volume ratio (Edexcel GCSE Biology & Combined Science)

(0)
This lesson uses step by step guides to describe how to calculate the surface area to volume ratio. The PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons which have been designed to cover the detail of points 8.2 and 8.3 of the Edexcel GCSE Biology & Combined Science specifications. The calculation of the SA/V ratio can be an area of the course that students find difficult so this lesson breaks the calculation into parts to guide them through each step. The students are shown how to calculate the surface area, then the volume and then how to express the answer of the division calculation as a ratio against 1. After each step, the students are given the opportunity to apply their understanding and all questions have mark schemes with full workings embedded into the PowerPoint to allow the students to self-assess. Students also tend to struggle to see the relevance to Biology so the remainder of the lesson involves the calculation of the ratio for the alveoli in the human body. Students will discover that the surface area to volume ratio is significantly increased in these gas exchange surfaces which leads into the upcoming lesson on the adaptations of the alveoli to overcome the overall low ratio in larger organisms.