Hero image

R STONE's Shop

Average Rating5.00
(based on 3 reviews)

All resources are supported with carefully selected images to support long term retrieval of key information. Lessons are sequenced to prevent congnitive overload and are particularly effective for LPA/MPA and SEND learners as a result.

All resources are supported with carefully selected images to support long term retrieval of key information. Lessons are sequenced to prevent congnitive overload and are particularly effective for LPA/MPA and SEND learners as a result.
Stopping Distances (AQA GCSE Physics)
LIAMJSTLIAMJST

Stopping Distances (AQA GCSE Physics)

(0)
The focus of this lesson is on stopping distances (breaking and thinking distance) AQA GCSE Physics. The lesson includes an background on stopping distances, worksheet, and several other activities for students to complete throughout the lesson. The lesson includes the small amount of higher-tier only content required for higher tier students. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Acceleration and Uniform Acceleration Calculations (AQA GCSE Physics)
LIAMJSTLIAMJST

Acceleration and Uniform Acceleration Calculations (AQA GCSE Physics)

(0)
The focus of this lesson is on acceleration and uniform acceleration calculations for AQA GCSE Physics. The lesson includes an background context on acceleration and uniform acceleration calculations with scaffolds to support, worksheet, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. The resources also include tier 2/3 exam questions (and answers) to support. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Velocity-Time Graphs
LIAMJSTLIAMJST

Velocity-Time Graphs

(0)
The focus of this lesson is on velocity-time graphs for AQA GCSE Physics. The lesson includes a background on velocity-time graphs, how to draw and infer from these graphs, calculations from VT graphs and scaffold to support, worksheet, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. The resources also include tier 2/3 exam questions (and answers) to support. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Distance-Time Graphs (AQA GCSE Physics) Lesson
LIAMJSTLIAMJST

Distance-Time Graphs (AQA GCSE Physics) Lesson

(0)
The focus of this lesson is on distance-time graphs AQA GCSE Physics. The lesson includes an background context on distance-time graphs, how to draw and infer from these graphs and how to calculate speed from DT graphs, worksheets and scaffolds to support, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. The resources also include tier 2/3 exam questions (and answers) to support, some coached via the teacher. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Speed and Velocity and Calculations (AQA GCSE Physics)
LIAMJSTLIAMJST

Speed and Velocity and Calculations (AQA GCSE Physics)

(0)
The focus of this lesson is on speed and velocity and speed, distance, time calculations for AQA GCSE Physics. The lesson includes an background context on speed and velocity in relation to scalar and vector quantities, S = D/t calculations and scaffold to support, typical speeds table, worksheet, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Investigating Springs and Elastic Potential energy (AQA GCSE Physics)
LIAMJSTLIAMJST

Investigating Springs and Elastic Potential energy (AQA GCSE Physics)

(0)
The focus of this lesson is on investigating springs and elastic potential energy calculations for AQA GCSE Physics. The lesson includes an background context on stretching, compressing, and bending of springs, elastic and inelastic deformity, F = k e calculations and scaffold to support, worksheet, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. The resources also include tier 2/3 exam questions (and answers) to support. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions. The lesson includes a dual-coded integrated instruction method worksheet to support student agency in the laboratory. Practical inquiry must first undergo risk assessments in your department and be performed only with trained professionals, I accept no responsibility for what is done following the download of this resource - this resource is an example only and teacher’s must ensure their own safety measures are followed. I take no responsibility for practical elements of this lesson – teachers must complete their own risk assessments and are entirely responsible for the safety of students.
Elasticity Forces (AQA GCSE Physics)
LIAMJSTLIAMJST

Elasticity Forces (AQA GCSE Physics)

(0)
The focus of this lesson is on forces and elasticity for AQA GCSE Physics. The lesson includes an background context on stretching, compressing, and bending of springs, elastic and inelastic deformity, F = k e calculations and scaffold to support, worksheet, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. The resources also include tier 2/3 exam questions (and answers) to support. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Work Done and Energy Transfers (AQA GCSE Physics)
LIAMJSTLIAMJST

Work Done and Energy Transfers (AQA GCSE Physics)

(0)
The focus of this lesson is work done and energy transfers for AQA GCSE Physics. The lesson includes an introduction on work done with visuals to support, work done, force, and distance equation calculation support, frictional forces, worksheet to complete, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. The resources also include tier 2/3 exam questions (and answers) to support. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Newton's First and Third Laws (and Inertia) AQA GCSE Physics
LIAMJSTLIAMJST

Newton's First and Third Laws (and Inertia) AQA GCSE Physics

(0)
The focus of this lesson is Newton’s first and third laws (and inertia) for AQA GCSE Physics. The lesson includes an introduction to Newton’s Laws with visuals to support, resultant force worksheet to complete, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Weight, Mass, and Gravity (AQA GCSE Physics)
LIAMJSTLIAMJST

Weight, Mass, and Gravity (AQA GCSE Physics)

(0)
The focus of this lesson is weight, mass, and gravity for AQA GCSE Physics. The lesson includes an introduction on weight, mass, and gravity with visuals to support, equation support and worksheet to complete, and several other activities for students to complete throughout the lesson, with the addition of how to find the centre of mass of an object. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions. The lesson includes a dual-coded integrated instruction method worksheet to support student agency in the laboratory. Practical inquiry must first undergo risk assessments in your department and be performed only with trained professionals, I accept no responsibility for what is done following the download of this resource - this resource is an example only and teacher’s must ensure their own safety measures are followed. I take no responsibility for practical elements of this lesson – teachers must complete their own risk assessments and are entirely responsible for the safety of students.
Contact and Non-Contact Forces (Scalar and Vector) AQA GCSE Physics
LIAMJSTLIAMJST

Contact and Non-Contact Forces (Scalar and Vector) AQA GCSE Physics

(0)
The focus of this lesson is contact and non-contact forces and scalar vs. vector quantities for AQA GCSE Physics. The lesson includes an introduction on the types of forces with visuals to support, worksheet to complete, and several other activities for students to complete throughout the lesson. The lesson follows AQA GCSE Physics specification (P2) with GCSE Exam style questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is geared towards MPA-HPAs but is effectively scaffolded for LPA students too. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Motion and Pressure in Gases (AQA GCSE Physics)
LIAMJSTLIAMJST

Motion and Pressure in Gases (AQA GCSE Physics)

(0)
This lessons focus is on motion in gases and pressure in a gas (particle model of matter unit ) for AQA GCSE Physics (paper 1). This lesson includes visuals to support learners from all attainment levels, including a range of activities and worksheets. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions. The lesson includes key term list and low stakes worksheets to build confidence. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. The lesson has been used for MPA students but is scaffolded effectively for LPAs and has challenge and extension activites for HPAs. The lesson follows AQA GCSE Physics specification (P1 - particle model of matter) with GCSE Exam questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility.
Internal Energy, Changes of State, and Specific Latent Heat (AQA GCSE Physics) Lesson
LIAMJSTLIAMJST

Internal Energy, Changes of State, and Specific Latent Heat (AQA GCSE Physics) Lesson

(0)
This lessons focus is on Internal Energy, Changes of State, and Specific Latent Heat (particle model of matter unit ) for AQA GCSE Physics (paper 1). These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions. The lesson includes key term list and low stakes worksheets to build confidence. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. The lesson has been used for MPA students but is scaffolded effectively for LPAs and has challenge and extension activites for HPAs. The lesson follows AQA GCSE Physics specification (P1 - particle model of matter) with GCSE Exam questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility.
Density of Irregular Objects (AQA GCSE Physics) Visual Lesson
LIAMJSTLIAMJST

Density of Irregular Objects (AQA GCSE Physics) Visual Lesson

(0)
This lessons focus is on measuring density of irregular objects using a eureka can (particle model of matter unit ) for AQA GCSE Physics (paper 1). These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. The lesson has been used for MPA students but is scaffolded effectively for LPAs and has challenge and extension activites for HPAs. The lesson follows AQA GCSE Physics specification (P1 - particle model of matter) with GCSE Exam questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. The lesson includes a dual-coded integrated instruction method worksheet to support student agency in the laboratory. Practical inquiry must first undergo risk assessments in your department and be performed only with trained professionals, I accept no responsibility for what is done following the download of this resource - this resource is an example only and teacher’s must ensure their own safety measures are followed. I take no responsibility for practical elements of this lesson – teachers must complete their own risk assessments and are entirely responsible for the safety of students. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
AQA GCSE Physics Paper 2 Revision Worksheets (Foundation Tier)
LIAMJSTLIAMJST

AQA GCSE Physics Paper 2 Revision Worksheets (Foundation Tier)

(0)
This 3-page revision worksheet covers a significant amount of content needed for AQA GCSE Physics paper 2 (foundation tier), including: Forces Scalar and Vector Quantities Resultant Forces Newton’s Laws Paper 2 Calculations Acceleration Terminal Velocity Frictional Forces Elastic Objects and Hooke’s Law Stopping and Thinking Distance Speed Distance Time Relationships Velocity-Time graphs Waves: Longitudinal and Transverse Waves Required Practical (ripple tank) Radiation and Required Practical Electromagnetic Spectrum Magnets and Electromagnetism Students can complete this for home learning or during a lesson. The adjoining lesson for this worksheet can also be purchased (worksheet included) on my shop with the title “AQA GCSE Physics Paper 2 Whole Unit Revision (3-4 Lessons) - Foundation”.
AQA GCSE Physics Paper 2 Whole Unit Revision (3-4 Lessons) - Foundation
LIAMJSTLIAMJST

AQA GCSE Physics Paper 2 Whole Unit Revision (3-4 Lessons) - Foundation

(0)
This sequence of lessons of 190 slides is a highly effective summary of the whole of physics paper 2 for foundation tier combined science students. This lesson/sequence is fantastic revision following AQA GCSE Physics Paper 2 specification. The students complete an A3 revision poster throughout the session which is effective at maintaining high engagement throughout the lesson as most content is already completed for them. The lessons include revision on: Forces Scalar and Vector Quantities Resultant Forces Newton’s Laws Paper 2 Calculations Acceleration Terminal Velocity Frictional Forces Elastic Objects and Hooke’s Law Stopping and Thinking Distance Speed Distance Time Relationships Velocity-Time graphs Waves: Longitudinal and Transverse Waves Required Practical (ripple tank) Radiation and Required Practical Electromagnetic Spectrum Magnets and Electromagnetism These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. The lesson follows AQA GCSE Physics with GCSE Exam questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, literacy approaches, student exam questions and pair discussions. This unit has proved highly successful at increasing pupil engagement, and increasing exam outcomes. There is also dual-coded integrated instruction method worksheet to support student agency in the laboratory. Disclaimer: Practical inquiry must first undergo risk assessments in your department and be performed only with trained professionals, I accept no responsibility for what is done following the download of this resource - this resource is an example only and teacher’s must ensure their own safety measures are followed. I take no responsibility for practical elements of this lesson – teachers must complete their own risk assessments and are entirely responsible for the safety of their students. This lesson includes foundation tier combined science content only.
Surviving an Asteroid - 10-Session STEM Enrichment Project
LIAMJSTLIAMJST

Surviving an Asteroid - 10-Session STEM Enrichment Project

(0)
This document includes a minimum of 9 sessions for a STEM Club enrichment opportunity, based around the theme of surviving an asteroid impact. All sessions have been tested and optimised, and come with a clear integrated instruction practical manual for every session. The document is 12 pages and each student should get a copy for the project. Most stocked prep rooms should contain most if not all the equipment needed. The weeks include: Acids from the skies - Students test everyday items with an without a protective coating to see what helps to evade damage from hydrocholric acid. Where did the sun go? - Students use pondweed to test the rate of photosynthesis under different conditions inluding before the asteroid (full light), during the asteroid (paper representing cloud of smoke) and hydrochloric acid representing acid rain. Pathogen Tyranny - Students use aseptic technique to culture microorganisms to see what may have survived following the asteroid impact. Pathogen Tyranny - part 2 - students calculate zones of inhibition surrounding the different antibiotic disks used in week 3. (optional week) Extremophile Survival - Students search school grounds for moss to identify water bears under the microscope whilst learning about organism adaptability. Artificial Sun - Students will use different coloured bulbs (or bulb coverings) to test the rate of growth of plants over time, students learn about photosynthesis and the visible light spectrum. Artificial Sun - Part 2 (Optional) - Students measure growth rate of ‘crops’ from previous week. Meteorite Simulation - Students use different size (radius and mass) objects dropped from different heights to calculate depth and width of craters, and the potential damage they could do if upscaled to an Earth setting. Strawberry DNA Extraction - Students learn about DNA Mutations as a consequence of meteorite impact, DNA molecules and how to extract them from strawberries. This is a great, fun, and simple practical inquiry for students. A New Home? - Students learn that Earth may no longer be inhabitable and instead must move to another planet. Students will test the ‘atmosphere’ of 3 different planets for oxygen, carbon dioxide, chlorine, and hydrogen using common gas tests (AQA GCSE Chemistry link). These resources have been trialled and will work effectively at embedding a STEM Curriculum at your school, or for challenge weeks or curriculum enrichment Practical inquiry must first undergo risk assessments in your department and be performed only with trained professionals, I accept no responsibility for what is done following the download of this resource - this resource is an example only and teacher’s must ensure their own safety measures are followed. **I take no responsibility for practical elements of this lesson – teachers must complete their own risk assessments and are entirely responsible for the safety of students. **
Particle Model of Matter Knowledge Organisers (AQA GCSE Physics)
LIAMJSTLIAMJST

Particle Model of Matter Knowledge Organisers (AQA GCSE Physics)

(0)
This document contains 2 posters or knoweldge organisers which summarise the unit ‘particle model of matter’ for AQA GCSE Physics. Students like the simplicity and the summarisation of this unit into easy, manageable chunks. This resource is effective for revision purposes, or modeling for students how to revise effectively.
Limiting Reactants (AQA GCSE Quantitative Chemistry)
LIAMJSTLIAMJST

Limiting Reactants (AQA GCSE Quantitative Chemistry)

(0)
This lessons focus is on limiting reactants for AQA GCSE Quantitative Chemistry. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. This lesson is supportive of students who struggle with mathematical application and walks through content step-by-step. The lesson also includes how to calculate the relative formual mass of isotopes. The lesson follows AQA GCSE Chemistry specification (C1 - Quantitative Chemistry) with GCSE Exam questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.
Concentration of Solutions (AQA GCSE Chemistry)
LIAMJSTLIAMJST

Concentration of Solutions (AQA GCSE Chemistry)

(0)
This lessons focus is on concentration of solutions for AQA GCSE Quantitative Chemistry. This lesson uses a helpful mathematical structure strip to aid student understanding and has proved highly effective for students with dyscalculia to scaffold understanding. These lessons are all visual lessons which support all learners to access the curriculum, pushing students as well as scaffolding where appropriate. The lesson follows AQA GCSE Chemistry specification (C1 - Quantitative Chemistry) with GCSE Exam questions as assessment for learning throughout, as well as a number of other fun and engaging activities to support learner agency and exam paper accessibility. These lessons are an effective and balanced mixture of teacher-led explanation, student AFL, student exam questions and pair discussions.