Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Define elastic and non-elastic deformation in materials.
Calculate the extension (or compression) of a material using its length and original length.
State Hooke’s law and use it to calculate the force required to cause a given extension in a spring using the spring constant.
Describe how elastic potential energy is stored when a material is stretched or compressed by a force.
Describe force-extension graphs of elastic materials and identify the limit of proportionality.
Compare the behaviour of different materials before and after the limit of proportionality.
Describe the motion of an object by interpreting distance–time graphs.
Describe how the gradient of a distance–time graph represents the speed.
Calculate the speed of an object by calculating the gradient from a distance–time graph.
Describe the motion of an object by interpreting velocity–time graphs.
Describe how the gradient of a velocity–time graph represents the acceleration.
Calculate the acceleration of an object by calculating the gradient from a velocity–time graph.
This lesson provides a comprehensive introduction to the fundamentals of electrical circuits. It is designed to help learners build essential skills and knowledge in circuit theory through engaging explanations and practical exercises.
Key features of the lesson include:
Circuit Components and Symbols: Learn to identify common circuit components and match them to their symbols and functions.
Drawing Circuit Diagrams: Practice constructing and interpreting simple circuit diagrams, including series and parallel configurations.
Types of Circuits: Explore the differences between series and parallel circuits, focusing on energy flow and practical applications like Christmas tree lights.
Current and Voltage: Understand the flow of charge (current) and energy transfer (potential difference), including how to measure them with ammeters and voltmeters.
Hands-On Practice:
Match symbols to components.
Draw circuits with specified requirements.
Analyze the effects of circuit changes on functionality.
Discussion Questions: Apply concepts to answer key questions about circuit behavior, including the advantages of different setups.
This lesson equips students with the foundational tools to explore more advanced electrical concepts while grounding their learning in practical applications and real-world relevance.
PowerPoint that covers the key words: transparent, translucent, opaque, absorbed, transmitted, luminous, non-luminous, light meter and reflected. This is made for a KS3 level class.
The PowerPoint includes the answers to the activities.
PowerPoint that covers law of reflection, virtual images, specular reflection and diffuse reflection. This is made for a KS3 level class.
Includes diagrams, class practical (or demonstration/video), questions, answers and assessment for learning opportunities.
Lesson 1 The Night Sky
Lesson 2 The Solar System
Lesson 3 Gravity, Mass and Weight
Lesson 4 The Earth
Lesson 5 The Moon
Lesson 6 Eclipses and Changing Ideas
Describe the difference between balanced and unbalanced forces and give examples for both.
Identify and calculate resultant forces.
Describe situations that are in equilibrium.
Explain why the speed or direction of motion of objects can change.
State the position of the Earth and the Moon with respect to the Sun in solar and lunar eclipses.
Draw simple ray diagrams of solar and lunar eclipses.
Describe evidence that led to a change in the model of the Solar System.
Learning objectives:
• State the factors that affect the elastic potential energy store of a spring.
• Calculate the elastic potential energy store of a stretched spring.
• Perform calculations involving the rearrangement of the elastic potential energy equation.
Learning Objectives:
• State the factors that affect the change in the gravitational potential energy store of a system.
• Calculate the gravitational potential energy store of a system using the mass, gravitational field strength, and height.
• To investigate how the gravitational potential energy store of different objects is affected by their mass and height.
Learning Objectives:
• Describe closed and open systems and the changes to energy stores within them.
• Investigate the effect of friction from different surfaces on energy dissipation and work done.
Learning Objectives:
• State the factors that affect the size of a kinetic energy store of an object.
• Calculate the kinetic energy store of an object.
• Investigate how mass and speed affect the kinetic energy store.
This GCSE physics resource bundle offers a complete introduction to the fascinating world of atomic structure and radioactivity. With seven detailed lessons, students will explore the fundamentals of atoms and isotopes, radioactive decay, and the practical applications of radiation. This bundle is designed to align with the GCSE physics curriculum, making it an essential tool for effective teaching and learning.
The bundle includes:
Atoms and Isotopes: Introduces the structure of atoms, isotopes, and their differences, with clear explanations and engaging examples.
Radioactive Decay: Explains the concept of unstable nuclei and how radioactive decay results in the emission of radiation.
Alpha, Beta, and Gamma Radiation: Examines the properties and differences of the three types of radiation, with visual aids and practical examples.
Nuclear Decay Equations: Teaches students how to write and balance nuclear equations for alpha and beta decay, linking theory to exam requirements.
Activity and Half-Life: Explores how to measure radioactive activity and understand half-life, with examples of real-world applications.
Working with Half-Life: Guides students through calculations involving half-life, providing plenty of practice opportunities.
Uses of Radiation: Discusses the practical and beneficial uses of radiation in medicine, industry, and power generation, as well as the associated risks.
How to use:
Each lesson features engaging activities, clear explanations, and exam-style questions to reinforce learning. Teachers can use the materials for structured lessons, revision sessions, or interventions. With this bundle, students will develop a deep understanding of atomic physics and radiation, preparing them for exams and sparking their curiosity about the natural world.
Lesson 1 Atoms and Isotopes
Lesson 2 Radioactive Decay
Lesson 3 Alpha Beta and Gamma
Lesson 4 Nuclear Decay Equations
Lesson 5 Activity and Half Life
Lesson 6 Working with Half Life
Lesson 7 Uses of Radiation