Hero image

Science 4 Breakfast

Average Rating5.00
(based on 4 reviews)

Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.

172Uploads

16k+Views

2k+Downloads

Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Convex and Concave Lenses
Malachite44Malachite44

Convex and Concave Lenses

(0)
PowerPoint that covers the following learning objectives: Investigate how light travels through a lens. Describe the difference between a convex lens and a concave lens. Identify the focal point in a light ray diagram of a convex lens. This is made for a KS3 science class. Includes questions, answers, diagrams and link to a virtual simulation.
GCSE Physics Forces and Motion Bundle: 14-Lesson Unit
Malachite44Malachite44

GCSE Physics Forces and Motion Bundle: 14-Lesson Unit

14 Resources
Lesson 1 - Scalars and Vectors Lesson 2 - Forces Lesson 3 - Resultant Forces Lesson 4 - Parallelogram of Forces Lesson 5 - Centre of Mass Lesson 6 - Forces and Elasticity Lesson 7 - Springs Practical Lesson 8 - Speed Lesson 9 - Distance-Time Graphs Lesson 10 - Acceleration Lesson 11 - Velocity-Time Graphs Lesson 12 - F=ma Lesson 13 - Weight and Terminal Velocity Lesson 14 - Forces and Braking
GCSE Physics Specific Latent Heat: Complete Lesson
Malachite44Malachite44

GCSE Physics Specific Latent Heat: Complete Lesson

(0)
Students will: Describe changes in particle bonding during changes of state. Differentiate between latent heat of fusion and latent heat of vaporization. Perform calculations involving specific latent heat. Starter Activity: Define key terms: specific heat capacity, internal energy, temperature. Recall the formula for specific heat capacity. Identify various changes of state. Introduction to Concepts: Define latent heat as the energy required for a phase change without a temperature change, focusing on overcoming intermolecular forces. Differentiate between specific latent heat of fusion (solid ↔ liquid) and vaporization (liquid ↔ gas). Discuss the role of energy transfer during state changes (e.g., energy input during melting and boiling, energy release during freezing and condensation). Worked Examples and Practice: Solve problems such as calculating the energy required to change a specific mass of a substance’s state using the formula. Interactive Questions: Use mini whiteboards for multiple-choice questions on changes of state, energy transfers, and misconceptions (e.g., whether temperature changes during state changes). Recap key differences between specific heat capacity and latent heat. Assign calculations for practice, such as determining energy transfer for melting ice or boiling water. This lesson blends theory and practical calculations, preparing students for real-world applications of thermodynamic principles.
KS3 Physics Power and the Cost of Electricity: Complete Lesson
Malachite44Malachite44

KS3 Physics Power and the Cost of Electricity: Complete Lesson

(0)
PowerPoint that covers power and the cost of electricity for a KS3 level class. The starter revisits efficiency and energy stores from previous lessons to enhance memory recall. The power equation (power = energy transferred / time) is covered with an example of how to show working out. Slides include rearranging the equation and unit conversions. The cost equation (cost = power x time x cost per kWh) is also covered. Answers are included.
GCSE Physics Temperature and Heat Transfer Bundle: 9-Lesson Unit
Malachite44Malachite44

GCSE Physics Temperature and Heat Transfer Bundle: 9-Lesson Unit

9 Resources
This resource bundle provides an in-depth exploration of energy transfer and thermal physics, designed to support both teaching and learning. It includes: Energy and Temperature: Understanding the relationship between energy transfer and changes in temperature. Conduction: Examining how thermal energy is transferred through solids. Investigating Conductors and Insulators: Practical activities to identify and compare materials based on their thermal conductivity. Convection and Radiation: Exploring heat transfer in fluids and through electromagnetic waves. Heating and Insulating Buildings: Real-world applications of thermal energy transfer and energy efficiency strategies. Specific Heat Capacity: Concepts and calculations to understand energy requirements for temperature changes in materials. Required Practical on Specific Heat Capacity: Step-by-step guidance for conducting and analyzing this core experiment. Internal Energy and Specific Latent Heat: A detailed look at energy changes during phase transitions and the implications for particle bonding. This collection is ideal for students and educators aiming to deepen their understanding of thermal physics through engaging lessons, experiments, and problem-solving activities.
GCSE Physics Force and Acceleration F=ma: Complete Lesson
Malachite44Malachite44

GCSE Physics Force and Acceleration F=ma: Complete Lesson

(0)
• Describe the effect of changing the mass or the force acting on an object on the acceleration of that object. • Calculate the force required to cause a specified acceleration on a given mass. • Perform calculations involving the rearrangement of the F = ma equation.
GCSE Physics Centre of Mass: Complete Lesson
Malachite44Malachite44

GCSE Physics Centre of Mass: Complete Lesson

(0)
• Define what the centre of mass is and identify where it would be in a range of simple shapes. • State that a suspended object will come to rest so that the centre of mass lies below the point of suspension. • Describe an experimental technique to determine the centre of mass of an object with an irregular shape. • Compare the stability of objects to the position of their centre of mass.
GCSE Physics Acceleration: Complete Lesson
Malachite44Malachite44

GCSE Physics Acceleration: Complete Lesson

(0)
Describe the difference between speed and velocity. Calculate the acceleration of an object using the change in velocity and time. Rearrange the acceleration equation to calculate change in velocity or time.
KS3 Physics Making Electricity with Fossil Fuels: Complete Lesson
Malachite44Malachite44

KS3 Physics Making Electricity with Fossil Fuels: Complete Lesson

(0)
PowerPoint that covers generating electricity by combusting fossil fuels. Includes how fossil fuels are formed, what we use them for, how electricity is generated and the advantages and disadvantages. This is made for a KS3 level class. The starter activity revisits efficiency and power from previous lessons to enhance memory recall.
KS3 Physics Colours of Light, Colour of Objects, Filters and Dispersion: Complete Lesson
Malachite44Malachite44

KS3 Physics Colours of Light, Colour of Objects, Filters and Dispersion: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Describe and explain what happens to light when it passes through a prism. State how primary colours add to make secondary colours. State the effect of coloured filters on light and explain how filters and coloured materials subtract light. This is made for a KS3 science class. Includes questions, answers, diagrams, examples and a link to a virtual simulation of dispersion.
GCSE Physics Energy and Efficiency: Complete Lesson
Malachite44Malachite44

GCSE Physics Energy and Efficiency: Complete Lesson

(0)
Learning Objectives: • Describe an efficient transfer as one that transfers more energy by a useful process. • Calculate the efficiency of a range of energy transfers. • Rearrange the efficiency equation to find input or total output energy.
GCSE Physics Forces Bundle: 7-Lesson Unit
Malachite44Malachite44

GCSE Physics Forces Bundle: 7-Lesson Unit

7 Resources
Lesson 1 Scalars and Vectors Lesson 2 Forces Lesson 3 Resultant Forces Lesson 4 Parallelogram of Forces Lesson 5 Centre of Mass Lesson 6 Forces and Elasticity Lesson 7 Springs Practical
GCSE Physics Heating and Insulating Buildings: Complete Lesson
Malachite44Malachite44

GCSE Physics Heating and Insulating Buildings: Complete Lesson

(0)
This PowerPoint resource provides an interactive approach to teaching the concepts of heat transfer, energy efficiency, and insulation. Perfect for secondary school science classes, it includes: Starter Activity: Review key heat transfer concepts with targeted questions on conduction, convection, and radiation. Big Questions: Investigate how heat is lost from homes and how insulation helps reduce costs and energy waste. Detailed Explanations: Explore real-life applications of heat transfer, including loft insulation, cavity walls, radiator reflectors, and double-glazed windows. Practice Problems: Include payback time calculations to analyze the financial and environmental benefits of insulation. Interactive Tasks: Fill-in-the-blank activities, practical questions, and opportunities to reflect on energy-saving strategies. This resource is designed to support student understanding of thermal energy transfer and encourage critical thinking about sustainable living.
GCSE Physics Convection and Radiation: Complete Lesson
Malachite44Malachite44

GCSE Physics Convection and Radiation: Complete Lesson

(0)
This PowerPoint resource is perfect for teaching the concepts of thermal energy transfer through convection and radiation. Designed with clarity and interactivity in mind, it includes: Starter Activities: Thought-provoking questions to activate prior knowledge about heat conductors and insulators. Learning Objectives: Clearly defined goals to help students understand convection currents, describe radiation, and differentiate between heat transfer methods. Detailed Explanations: Step-by-step breakdowns of convection and radiation with real-life examples like heating in homes and energy transfer in space. Interactive Tasks: Gap-fill activities, question prompts, and diagram-drawing exercises to consolidate learning. Demonstrations: Visual examples and experiment-based questions to bring abstract concepts to life. Ideal for secondary school science lessons, this resource supports active learning and engagement.