Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

785k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Structure & Bonding' lessons

10 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Structure & Bonding’ unit for the NEW AQA Chemistry Specification. Lessons include: States of matter Forming ions Ionic bonding Giant ionic lattices Covalent bonding Simple and giant covalent structures Metallic bonding & giant metallic structures Nanoparticles The lessons contain a mix of differentiated activities, mid-lesson progress checks, exam questions and extra challenge tasks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Chemistry - 'Chemical changes, Electrolysis and Energy Changes' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Chemical changes, Electrolysis and Energy Changes' lessons

10 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical changes, Electrolysis and Energy Changes’ unit for the NEW AQA Chemistry Specification. Lessons include: The Reactivity Series Displacement Reactions Extracting Metals Making Salts Neutralisation & Strong/Weak Acids Electrolysis Aluminium Extraction Exothermic & Endothermic Reactions Reaction Profiles & Bond Energy Calculations Chemical cells, batteries and fuel cells The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Biology - 'Inheritance, variation & evolution' HT lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Inheritance, variation & evolution' HT lessons

4 Resources
This bundle of resources contains 4 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Inheritance, variation & ecology’ unit for the NEW AQA Biology Specification. Lessons included: Cloning Mendel Theories of evolution Evolution & Speciation The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE  (2016) Chemistry - Endothermic and Exothermic Reactions
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Endothermic and Exothermic Reactions

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, for more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a description of an exothermic reaction, including examples such as the thermite reaction and the screaming jelly baby reaction. This includes link to videos to demonstrate the energy transfers which are taking place during these exothermic reactions. Pupils are then asked to think>pair>share ideas about what an endothermic reaction might be and to come up with any examples if they can. Once students have had chance to discuss in groups, they can feedback to the class for a brief class discussion before the answer and examples are revealed using the PowerPoint presentation. The next part of the lesson requires pupils to undertake an investigation into different reactions, they will identify whether three different chemical reactions are either endothermic or exothermic bu measuring the temperature change for each of them. Students should follow the instructions included and record their results in the table provided. Students are now introduced to energy level diagrams to explain what is happening during an endothermic and exothermic reaction, they can sketch an example of each in their books for future lessons on energy profiles. The next part of the lesson will be a progress check, students should answer in their books and the work can be self-assessed using the answers provided. The last part of the lesson is on uses of endothermic and exothermic reactions in products, students will each be given a card of information. They will need to share their information with others to complete a table in their books to describe each of the products, identify if it is an endothermic or exothermic reaction and evaluate the advantages and disadvantages. The plenary task is for pupils to come up with their own product which uses either an endothermic or exothermic reaction. Thank you, leave any questions in the comment section :)
NEW AQA Trilogy GCSE (2016) Biology - Transport in plants
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Transport in plants

(4)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology ‘Organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by pupils observing a diagram of a phloem and a xylem vessel and discussing what the similarities and differences are between the two tissues. This can lead into a class discussion about the two structures. Next is a quick recap task, pupils should have already looked at the overall function of both of these vessels so pupils now need to complete sentences to describe the role of the xylem an phloem vessel in plants. The next activity is a video, pupils will given a set of questions and they will need to answer these questions using the video. Once finished they can self-assess their work using the answers provided on the PowerPoint. Next, pupils will need to draw two columns in their book entitled Xylem and Phloem and sort statements into these two columns, after this is completed they can assess their work. The last thing students will need to consider is why is transport so important in plants, pupils will discuss/brainstorm in their books why sugars, mineral ions and water are important to the plant. The answers can then be revealed to them. The final activity is a past-paper 6 mark question, pupils will need to attempt to answer this on their own, at the back of their books for an extra challenge! Plenary activity is to complete a summary of what the students have learnt that lesson, a list of key words will be provided to help them complete this task. All resources are included in the PowerPoint, any questions please ask me via the comments section. Any feedback of this lesson would be much appreciated :) thank you!
NEW AQA GCSE (2016) Chemistry  - Useful Alloys
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Useful Alloys

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Using Our Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with a Think > Pair > Share task for pupils to consider the properties of gold, pupils can list them down and then share their ideas with the class. The property of gold being very soft is not always useful, especially when it is being used to make jewelery and so it is often mixed with another metal (e.g. platinum) to make it stronger. The concept of an ‘alloy’ is then introduced, as well as a definition and an explanation as to why alloys are useful. Some useful properties of alloys are listed - malleable, durable, strong, flexible - pupils need to come up with a a definition for each of these properties. Once this task is complete students can self-assess their work using the mark scheme provided. The next task for pupils to complete is ‘Who’s right for the job?’ - students will be given information on the properties of different metals, as well as a list of alloys needed for different jobs - used in jewelery/used to make airplane bodies. Students need to select the correct metals to make the alloys required, their work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on iron alloys specifically, firstly students will watch a video on iron alloys and will need to answer a set of questions - this work can then be self-assessed using the answers provided. The last task for pupils to complete is a table whereby students need summarise how carbon content affects steel and it’s properties, this work can also be self-assessed using the mark scheme provided. The plenary task requires pupils to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry - Rates of Reaction
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Rates of Reaction

(4)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a ‘Think, Pair, Share’ task to get students thinking about what the rate of a reaction tells us about that chemical reaction. After a short partner and class discussion, the answer can be revealed to the class via the PowerPoint slide. This is followed by a task whereby students need to place a mixture of chemical reactions in order of their speed, getting students to think about which of these reactions might have the fastest rate of reaction. Students are then introduced to the two ways in which scientists can measure the rate of reaction - how much product formed/how much reactant is used up over a given time. Students will be asked to read some information about this topic and then answer questions on it, this work can be self-assessed using the answers provided in the PowerPoint. Students will then watch a video on how to calculate the rate of a reaction using a graph, students can self-assess their answers using those provided in the PowerPoint presentation. Students will then practice these skills by plotting a graph using a set of data, which they will then need to use to answer a set of questions, this can be self-assessed using the mark scheme provided. The next video outlines how students can use a graph to a work out the rate of a reaction at a fixed point, students will answer questions whilst watching the video and then self-assess their work using the answers provided. Lastly, students will again practice this skill by plotting a graph using data provided and then will need to use the graph to work out the rate of reaction at different fixed points. This work can be self-assessed using the answers provided. The plenary task is is for pupils to complete one of a choice of sentences starters, which would summarize what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Rates of decomposition
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Rates of decomposition

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils are firstly given some information, in pairs, on how temperature can affect the rate of decay. They are asked to read through the information and complete a set of questions. Once this task is complete pupils can self-assess their work using the answers provided. The next task is for pupils to think > pair > share ideas about how you could stop or delay the decay process with food. Some images are provided on the PowerPoint slide as a prompt to help students, they can also use the information from the first task to help them come up with ideas. Once pupils have been given time to write their ideas down you can discuss as a group and then reveal the 5 main ways in which foods can be preserved. Pupils will then be given a set of information about each of these preservation methods, they need to use this information plus the information from the first task they completed to explain how each of the methods helps to prevent or delay the decay process. Pupils can then self or peer assess their work once complete. For the next task pupils are asked to use information posters places around the room or on their tables to answer a set of questions about decay & recycling. Once pupils have completed these questions they will need to assess their work using the answers provided. The very last task is an exam question that pupils can either complete in silence at the back of their books - higher ability - or perhaps use the work they have completed this lesson if they are lower ability. The plenary task is for students to write three sentences to summarise what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – HIV
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – HIV

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on the human immunodeficiency virus begins with a starter discussion on immunity and vaccination. Students should discuss the features of a successful vaccination program, and why vaccination cannot often eliminate a disease. Students are then introduced to the structure of HIV and its function as a retrovirus. To explain the infection process students will watch a short video while answering questions in their books. Answers are available on the following slide for self-assessment. The next task is a worksheet for students to label and correctly describe each stage of HIV infection and replication. They can self-asses to the next slide. Students will then discuss the process by which HIV causes the symptoms of AIDS. The following slides explain the function of antibiotics and explain why these are not suitable for treating viruses. In order to introduce the ELISA test, students will watch two short animations and answer questions in their books. Answers are on the following slide for self-assessment. They should take thorough notes in their book, on two diagrams of indirect and direct ELISA. The plenary is to write a tweet demonstrating their learning, including #keywords! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Specification - Drug Trials
SWiftScienceSWiftScience

NEW AQA GCSE Specification - Drug Trials

(1)
This is a resource for the NEW AQA GCSE Biology 'Infection & Response' unit. Please find further resources designed to meet specification points for the NEW AQA Biology, Chemistry and Physics specifications at: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly consider some traditional medicines such as digitalis for dropsy, willow trees for aspirin and penicillin mould. Pupils then consider the time and money taken to conduct a drug trial, as well as the stages that are involved. Pupils will watch a video to determine the definition of a placebo and a double-blind trial, pupils should also use the video to identify how clinical scientists maintain a fair test during a clinical trial. The next part of the lesson pupils will be introduced to what happens during the pre-clinical trial phase and the three stages of the clinical trial phase. Once students have learnt this they will need to match the key words to the definitions. They will also be given a set of 6 statements which they need to write in order, as a flow diagram, in their books to represent the stages of the drug trialling process. Pupils can then self-assess their work. There is a 6-mark question on what they have learnt this lesson. To really test pupils' knowledge they should try and complete this in the back of their books, perhaps giving them a set of key words as prompts. For a less able class, they should be able to use their notes from the lesson. Pupils can peer-assess their work using the marking criteria on the PowerPoint slide. All of the resources can be found on the PowerPoint slide, there is also extra resources at the end which could be used in an extra lesson or as a homework activity. Other lessons from the 'Infection and Response' unit can be found in my TES shop :)
NEW AQA GCSE Biology - 'Ecology' lessons ' HT only
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Ecology' lessons ' HT only

5 Resources
This bundle of resources contains 5 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Ecology’ unit for the NEW AQA Biology Specification. Lessons included: Rates of decomposition Global warming & the impact of change Trophic levels & biomass Transfers of biomass Food production The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Physics - Radioactivity
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Physics - Radioactivity

8 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Molecules & Matter’ unit for the NEW AQA Physics Specification. Lessons include: Atoms & Radiation The Development of the Nuclear Model Radioactive Decay Alpha, Beta & Gamma Radiation Half-life & Radioactivity Nuclear Radiation & Medicine Nuclear Fission & Nuclear Fusion Dangers of Radiation The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry - Balancing equations & Reacting Masses
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Balancing equations & Reacting Masses

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an worked example of how to balance equations, after this pupils are asked to complete a fill-in-the-blank task to summarize the importance of balancing equations. This work can be assessed using the answers provided on the PowerPoint presentation. There are two further worked examples for the teacher to go through using the PowerPoint presentation, pupils will specifically look at the number of atoms of each element on each side of the equation to decide whether it is balanced or not. If it is not balanced then the class can discuss how to go about balancing it and pupils can attempt to answer the problems. The next worksheet is a set of equations, for each one the student must add up the number of atoms of each element on each side of the equation to decide if the equation is balanced or not. If it is not balanced students can have a go at balancing it, pupils can self-assess their work using the answers provided on the PowerPoint presentation. Finally pupils can have a go at balancing a list of equations, again the answers will be provided for pupils to assess their work. The next part of the lesson pupils will look at reacting masses, pupils will be shown how they can use a balanced symbol equation to work out the reacting masses Pupils will be shown a worked example first, then be given the steps that they need to carry out the calculations themselves. Pupils will then be given a worksheet of problems to work their way through, this work can be self-assessed using the answers in the PowerPoint presentation. Pupils will then be given a set of slightly harder problems to work through, these can be skipped for lower ability classes but would be useful to higher ability classes. The last part of the lesson focuses on teaching students to use the masses of reactants to work out the balanced symbol equation for a reaction. Again, pupils are shown a worked example and given a set of steps to help them to complete the problems themselves. They will then be given a worksheet to complete a set of problems. The plenary task requires students to write a twitter message on what they have learned about quantitative chemistry. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Atmospheric Pollutants
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Atmospheric Pollutants

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson asks students to think > pair > share some of their answers to questions about pollution - where does it come from? How may we monitor it? Once pupils have gathered together their ideas as groups, a class discussion can highlight some of the important ideas & the next slide details the answers. The next task focuses on sulfur dioxide pollution and it’s contribution to the formation of acid rain. Pupils will be given some information in pairs about this pollutant and will be required to answer questions about this information in their books. Once completed pupils are able to self-assess their work using the answers provided in the PowerPoint. Pupils will now watch a video on complete vs. incomplete combustion to think about the gases released into the atmosphere via these two processes. They will need to answer a set of questions whilst watching this video, they can then self-assess their work using the answers provided. Two further atmospheric pollutants are now introduced to the class - nitrogen oxides and also solid particulates released by diesel engines. Pupils will now complete a fill-in-the-blank task to summarise what they have learned to far this lesson, this task can then be self-assessed using the answers provided. This is followed by a quick check ‘True or False’ activity, pupils will need to identify whether a list of statements are true or false. The next part of the lesson focuses on how scientists can monitor pollution, pupils are given a set of results from particle collector pads which have been left in certain locations around the UK. Pupils need to record their results in a table, draw a graph to represent the results and write a conclusion about their results. The plenary task is for pupils to either summarise what they have learned today in three sentences or write a definition of a list of key words from today’s lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016)  Chemistry - Life Cycle Assessments
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Life Cycle Assessments

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with an introduction to a Life Cycle Assessment, what it is, how it is carried out and the reasons behind conducting them. Next, pupils will watch a video on the process and importance of carrying out an LCA - pupils can answer a set of questions whilst watching this and when finished they can self-assess their work using the mark scheme provided. Pupils are then shown a diagram which outlines the input and output of an LCA, including all of the processes which occur in between. Pupils will now consider the overall environmental impact of the production of a paper bag compared to the production of a carrier bag. Pupils can discuss their ideas of which may make the larger impact on the environment. Next, pupils will be given a set of information about the extraction of raw materials, manufacture, use and reuse and disposal of these two bags - using this information they will need to conduct an LCA for each bag. To do this they have been provided with a table to fill in, for each factor they will need to score the environmental impact from 1-10. At the end they will have a score out of 40, the higher the score the larger the environmental impact. The last part of the lesson requires pupils to consider the problems of conducting a life cycle assessment, they can mind map their ideas as a pair and then share as part of a class discussion. The teacher can then reveal some of the issues with LCA’s, pupils can check their work against these answers. The plenary task is for pupils to write three quiz questions to test their peers knowledge of what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk@gmail.com and any feedback would be appreciated :)
NEW (2016) AQA AS Biology – Gas Exchange in Fish
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – Gas Exchange in Fish

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on the gas exchange processes in fish begins with a quick review of the insect exchange system and the advantage of tracheoles being filled with water. Students are then introduced the exchange properties of fish; they should discuss as a class how fish supply respiratory gases to cells within their body tissues. They will then watch a short video and answer exam style questions based on the video. This activity should help students be prepared for a function/feature matching activity; answers are available on the following slide for self-assessment. The next task is to complete sentences explaining the process of gas exchange in fish and defining the features and functions of fish. Answers are on the following slide for self-assessment! Students are then introduced to the counter-current exchange. They should take thorough notes and understand the importance of the process. A video link is available in the notes in order to help consolidate. A worksheet with the appropriate diagrams is included. The following slide reiterates the difference between parallel and counter current flow. Points to note for an exam question are in the notes below, students will have the opportunity to answer exam style questions in the next task and answers are available for self-assessment. This lesson features a lab task for students to dissect and observe gas exchange surfaces in a bony fish. The method is set out on the slides. The lesson ends with a plenary, students should complete an exit card sharing 3 things they’ve learnt, 5 key words, and 1 question to test their peers. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Antibiotic Resistance
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Antibiotic Resistance

(1)
This is a resource aimed at the NEW AQA GCSE Biology specification, developed to meet learning outcomes within the 'Infection & Response' unit. This lesson is part of a 12 lesson bundle for the NEW 'Infection & Response' Unit, found in my TES shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by describing the process by which a bacteria may become resistant to an antibiotic. Pupils will then watch a storyboard animation which demonstrates this process visually. Pupils can then use this animation to create their own storyboard, including diagrams and captions, to represent the process of natural selection in bacteria which leads to antibiotic resistance. The focus of the lesson is then on MRSA, a few real-life headlines are given as an example of an antibiotic resistant bacteria. Pupils will brainstorm what sorts of methods hospitals employ to reduce the spread of such 'super bugs'. The final activity is for pupils to completed questions on antibiotic resistance and how to prevent the spread of antibiotic resistant bacteria such as MRSA. The mark scheme for the questions are included on the Power Point presentation for students to mark their own work or peer-assess. The plenary is a recap on the learning outcomes, pupils will need to assess whether they are R/A/G.
NEW AQA GCSE Biology (2016) - Vaccination
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - Vaccination

(1)
This is a resource for the NEW AQA GCSE Biology specification, covering specification points within the ‘Infection and Response’ module. For more resources aimed at the NEW AQA GCSE specifications please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This resource contains the PowerPoint for the lesson, the resources are found at the end of the PowerPoint. The lesson begins with considering what is important in a new medicine and what scientists need to think about when developing new medicines. This goes on to define some of the key factors such as safety, efficacy & stability. Next, is an introduction of how a vaccination works, pupils will watch a video and answer questions on a worksheet. Pupils will self-asses their work. Pupils will then complete a cartoon strip of how a vaccination works, trying to use as many key words as possible. Pupils should self-assess their work against correct use of key terminology. The plenary will test the pupils knowledge of their ability to describe how a vaccine works. They will need to turn to the back of their books and describe how a vaccine works, using as many of the key terms as possible. Resources are all found at the end of the PowerPoint. Enjoy :)
NEW AQA GCSE Trilogy (2016) Chemistry - Displacement Reactions
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Displacement Reactions

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Students are firstly introduced to the idea of a displacement reaction using an example of aluminium and iron oxide, pupils will then be given a list of chemical reactions and for each one students will need to decide whether a displacement reaction will occur. Students will now conduct an investigation whereby they will place a metal - copper, magnesium, iron and zinc - into copper sulphate solution and observe what happens. Using the results from this investigation, students should decide on the order of reactivity of these metals. Students are now given another list of reactions, for each one students need to now decide if a displacement reaction will take place and if so write out the word equation for each. Students can mark their work using the answers provided. The next part of the lesson focuses on oxidation and reduction, firstly students are provided with a definition of these two processes. They are then shown how to write an ionic half equation to demonstrate what is happening what is happening during a displacement reaction, which metal has been oxidised and which has been reduced. Pupils need to complete the ionic half equations for a list of reactions, pupils can assess their work against the answers provided on the PowerPoint presentation. The last task is a progress check, students need to work their way through a set of questions to assess what they have learnt this lesson. The answers to which are included on the PowerPoint slides forstudents to self-assess or peer-assess their work. The plenary task is for pupils to write a twitter message about what they learnt this lesson, no more than 140 characters and #keywords!! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Nutrients & Food Tests
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Nutrients & Food Tests

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the idea of a ‘food pyramid’, students will be given a selection of different foods and will need to consider how often they should be eaten, and so where on the food pyramid they should be placed. Once students have had chance to discuss and arrange their foods on the food pyramid, the answers can be revealed so students can check their work. Next, students are introduced to the idea of different food/drink groups: carbohydrates, protein, fats, vitamins, minerals, water and fibre. Students will each be given a card of information about one of these groups, they will need to walk around the room to share information with their peers in order to complete the summary table in their books. This task can be self-assessed using the mark scheme provided once it is complete. Next, students will consider how much energy different people require. Firstly, some examples will be talked through as a class - e.g. males generally need more energy than women, older people need less energy than younger people etc. Students will then complete a task to assess their knowledge on this topic, which can be marked and corrected using the answers provided once complete. Lastly, students will be introduced to the idea of a food test, they will be asked to consider which types of nutrients are present in a set of food which include: lemonade, crisps, margarine, bread & meat. After students have made predictions, they can then complete the food test investigation (equipment list and method is included). The plenary task requires students to spend a minute or two talking about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)