I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This is a lesson designed to meet specification points for the new AQA Trilogy GCSE Biology ‘Bioenergetics’ scheme of work.
The lesson begins by pupils being introduced to the term ‘photosynthesis’ and then being asked to consider the raw materials that plants need in order for photosynthesis to occur. Pupils are then given three minutes to write down everything they have learnt about photosynthesis so far, with an extension task to write the word equation for the reaction.
In the next part of the lesson pupils are introduced to the word equations and are challenged to write a balanced symbol equation for this reaction.
Mid-lesson plenary involves a set of exam-questions (total marks = 9 marks) which they can complete in silence and then peer or self-assess using the mark scheme provided.
Pupils are then introduced to the concept of endothermic and exothermic reactions, they are given the definition for an endothermic reaction and are then asked to ‘think, pair, share’ with a partner about what an exothermic reaction might be and whether photosynthesis is endothermic or exothermic. After 5 minutes, pupils are given the answers and they can mark their work.
The final activity is for pupils to watch a video on the scientific investigation conducted by Van Helmont, pupils watch the video and answer questions on a worksheet which can then be self or peer-assessed using red pens.
Pupils can choose their plenary activity - either writing quiz questions on the topic of the lesson or summarising what they learnt by writing a twitter message along with #keywords.
All resources are included in the PowerPoint presentation, thank you for purchasing :)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Forces in Action’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to moments, using a spanner. Students are then introduced to the calculation - moment = force x distance from the pivot.
Students are then shown a worked example using the calculation, before being presented with a problem to solve themselves. Next, students are shown a diagram of a man pushing down on one side of a see saw, at the other side is a bag of money. This diagram is labeled to show the effort force, pivot and load.
Students are then given a worksheet on levers, students will need to identify the effort force, pivot and load in each of the diagrams and also match the key words to the correct definition. This work can be self-assessed using the mark scheme provided once it is complete.
The last two tasks are assessment tasks, firstly students will copy and complete the paragraph, using the key words provided, to summarise what they have learned this lesson. This can then be self-assessed using the mark scheme provided. Lastly, students are presented with a set of moment problems, using the calculation they learned at the beginning of the lesson students will need to work through these calculations. The mark scheme for this task is also included so students can self-assess or peer-assess their work.
Lastly, students will be shown a diagram of apparatus which can be used to investigate the turning effect of a force. Students are asked some questions about this investigation, they will then need to complete a ‘Quick Check’ task which will assess students knowledge of what they have learned this lesson. This task can then be self-assessed using the mark scheme provided.
The plenary task requires students to copy and complete a sentence starter to summarise what they have learned this lesson.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
The plenary task requires students to write a Whatsapp message to summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a recap on genes and inheritance with a fill in the blank task, pupils can then mark their work using the mark scheme provided.
The first task is on sexual reproduction , pupils will watch a video and will need to note down any facts about sexual reproduction that they can remember from the video. They can then assess their work given the list provided. Pupils will then be given a list of questions and will watch a second video on asexual reproduction, pupils will then need to answer questions about asexual reproduction using the video. The answers to these questions can be assessed using the mark scheme provided.
The next activity requires pupils to copy down a flow diagram, filling in the blanks, to show how male and female gametes fuse together during fertilisation and develop into an embryo. This task focuses on chromosome numbers during this process. Pupils will now be provided with a set of jumbled statements, pupils will need to sort the statements into correct columns - they are either describing asexual or sexual reproduction. Pupils can mark their work using the answers provided.
The final activity is for pupils to answer an exam-style question on this topic, they can complete this in silence and at the back of their books to challenge them further. This work can then be assessed using the mark scheme.
The plenary activity is for pupils to unscramble the anagrams to reveal 6 key words taken from the lesson.
The plenary activity is for pupils to summarise the 5 main key words they have learnt that lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Motion & Pressure’.
More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to moments, by using a door opening by it’s hinges as an example. Student are shown an animation of a man trying to push a door open close to the hinges and far from the hinges of the door, demonstrating it is easier further from the hinges. Students are then introduced to the calculation - moment = force x distance from the pivot.
Students are then shown a worked example using the calculation, before being presented with a problem to solve themselves. Next, students are shown a diagram of a man pushing down on one side of a see saw, at the other side is a bag of money. This diagram is labeled to show the effort force, pivot and load.
Students are then given a worksheet on levers, students will need to identify the effort force, pivot and load in each of the diagrams and also match the key words to the correct definition. This work can be self-assessed using the mark scheme provided once it is complete.
The last two tasks are assessment tasks, firstly students will copy and complete the paragraph, using the key words provided, to summarise what they have learned this lesson. This can then be self-assessed using the mark scheme provided. Lastly, students are presented with a set of moment problems, using the calculation they learned at the beginning of the lesson students will need to work through these calculations. The mark scheme for this task is also included so students can self-assess or peer-assess their work.
The plenary task requires students to spend a minute talking to the person next to them about what they have learned this lesson.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.3 unit on Adaptation & Inheritance.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with a ‘Think > Pair > Share’ activity which requires students to consider the definition for the term ‘evolution’. After students have had some time to talk about this, their ideas can be shared with the class and the answer can be revealed for students to check and correct their work.
This leads into an introduction to the fossil record as means of evidence for evolution, students will then need watch a video on the formation of fossils - during which they will answer a set of questions. Students can now mark and assess their work using the mark scheme provided.
Students will now be introduced to the idea of ‘Natural Selection’, they will be told the mechanism by which this works by using the example of girraffes with longer and shorter necks. Students will now be asked to complete a cartoon strip to summarise this process, once this task has been completed students will be able to mark and assess their work using the answers provided in the PowerPoint presentation.
The last part of the lesson students will be shown a video on examples of natural selection in action. Whilst watching this video, students will need to answer a set of questions, once this has been completed students can self-assess their work using the answers provided.
The plenary task requires students to write three quiz questions to test their peers on what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.2 Ecosystem Processes.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson begins with a recap on the different organs of a plant – students should be able to name and correctly label the stem, leaves, flower and roots. Students will also need to correctly identify the function of each of these organs, this task can be self-assessed using the mark scheme provided.
Students will then watch a video on leaves and the structure of leaves, students will need to answer a set of questions whilst watching this video. This work can then be self-assessed using the answers provided on the PowerPoint. The next task requires students to complete a worksheet which focuses on the adaptations of the leaves, this work can be self-assessed using the mark scheme provided once complete.
The last activity then requires students to complete a worksheet which focuses on labelling structures and functions of a leave, this involves filling in boxes which surround a diagram of a cross-section of a leaf.
The plenary task then requires students to ‘pick a plenary’ – students can either summarise what they have learned in three sentences or write a definition of a set of key words.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’.
The lesson begins with an introduction to electromagnets, students are shown a diagram of an electromagnet and told how an electromagnet is made; students can make a note of these details in their books.
This follows into a video, students will watch the video and whilst watching will be given a series of questions to answer. Once this task is complete, students can then self-assess their work against the mark scheme that is provided.
Students will now be asked to consider what might affect the strength of an electromagnet, students can be given a few minutes to come up with their ideas in pairs before feeding back into a class discussion. Students will now complete an investigation into whether the following two factors - number of coils of wire & voltage - will affect the strength of an electromagnet. Students should follow the instructions provided on the PowerPoint presentation and complete the table of results in their books.
Once the investigation has been completed, students will complete a ‘Quick Check’ task in their books to assess their knowledge of what they have learned this lesson. The mark scheme for this is included for students to self-assess their work once it is complete.
Lastly, students will complete a ‘Copy and Correct’ task whereby students will need to copy a paragraph of information into their books, correcting any of the information that they seem to be erroneous. This task can also be checked against the answers provided on the PowerPoint presentation.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with an introduction to enzymes and a starter discussion to review the structure of amino acids and the quaternary structure of proteins.
Students will then watch a short video and work independently to answer review questions from the video. The following slide offers brief answers to these questions so that students may self-assess.
The lesson then progresses through a series of lecture style slides explaining enzyme involvement in chemical reactions, the structure of enzymes, and the two models of enzyme action.
Following these slides, students have an opportunity to work in pairs to teach each other the two enzyme action models. The information for each student in their pairs is provided as the last slide in the lesson. Students should take notes on both models in their books and are encouraged to sketch a ‘cartoon strip’ style diagram as an extra challenge.
Students are then asked to practise two exam style questions, worth 7 marks and 2 marks respectively. The slide following these questions offers a marking scheme so students may self-assess. After a short discussion on these two questions, students are tasked with a third exam question on enzyme action. This exam style question is attached as an additional resource for students to fill in the blank spaces as a worksheet which requires students to define important terms related to enzyme action.
As a plenary task to complete the lesson and check understanding, students are asked to complete one of four sentences in their books.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter to encourage discussion about the differences between the induced fit and lock and key models of enzyme action. Students are also asked to explain how temperature and pH balance affect enzyme action.
The following slide briefly reviews enzyme-controlled reactions then asks students to use their mini whiteboards to write down four factors that might affect successful collision. Students can self-assess with the answers on the slide.
Students are then taught to measure enzyme-catalysed reactions; in the notes I encourage you to ask students for examples and what the measurable changes are.
Students can then use the slide to work through the ‘fill in the blank style’ paragraph using a graph as a guide to understand enzyme-catalysed reaction. On the board where everyone can see you should write - substrate - product (H202 -> h2 + 02). The following slide includes answers so students may self-assess or check their answers with a partner.
The slides then work through a few more graphs to explain the effects of temperature and pH on enzyme action. The slides are lecture style, but you can see in my mores a few suggestions for discussion questions and further lecture material. Following these slides students are encouraged to graph on their own or perhaps as a large group.
Students are then given the opportunity to answer two graph style questions in their books and then self-assess.
Next the class will watch a video about measuring the rate of reaction at fixed points of time. After the video, students should answer four questions in their books and discuss the answers as a class. The next few slides build upon these questions and students are asked to practise calculating reaction rates on their own before self-assessing.
The plenary requires students to solve seven anagrams in their books, then write an original sentence with each word.
Each task or graph from the full lesson can be found on slides 22-27.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 5 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Earth’s Resources’ unit for the NEW AQA Chemistry Specification.
Lessons include:
Finite & Renewable Resources
Water Treatment
Extracting Metals from Ores
Life Cycle Assessments
Reduce, Reuse, Recycle
The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks
This bundle of resources contains 12 lessons which meet all learning outcomes within the 'Inheritance, Variation & Evolution’ unit for the NEW AQA Biology Specification.
Lessons include:
The properties of polymers
Useful alloys
Making fertilisers
Making ammonia: The Haber process
Glass, ceramics, composites
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This resource is designed to meet specification points in the new AQA Trilogy Biology ‘Cells’ SoW.
For more resources designed to meet specification points for the new AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with pupils shown a picture of an amoeba and one of a polar bear, they will need to discuss the difference between the organisms in terms of how they take in oxygen from their environment. Once you have shared a few ideas from the pupils with the class you can show the pupils the difference between the two organisms - amoeba can rely on simple diffusion whereas larger multicellular organisms need specialised exchange surfaces.
Pupils are then shown three examples of exchange surfaces - alveoli, small intestine and leaves of plants - they will need to think about how these structures might be adapted to exchange materials efficiently. You could have a short class discussion to develop these ideas.
Once you have again discussed these factors with the class you can reveal the next slide which outlines the 4 main features of an efficient gas exchange surface.
Pupils will then be given a worksheet and they will need to move around the room reading posters of information about villi and alveoli to complete the worksheet. This should take approximately 20 minutes, once finished pupils can peer-assess their work using the answers provided with the PowerPoint presentation.
The plenary is an Exit Card pupils will complete and pass to you on the way out of the door, this requires pupils to write down 3 key words, one fact and a question to test their peers knowledge of what they have learnt about in the lesson today.
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Rates of Reaction’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction to reversible reactions, including the example of thermal decomposition of ammonium chloride.
Pupils will then conduct an investigation into the energy changes which occur during a reversible reaction, using the practical sheet provided students will carry out the experiment and record their results in the table provided. The reversible reaction from this investigation is then shown on the board, with an explanation of the energy changes that are taking place as the reaction moves in either the forward or reverse direction.
Pupils will now watch a video on energy changes which take place during a reversible reaction, using this they will need to answer a set of questions. This work can be self-assessed using the answers provided on the PowerPoint presentation.
Pupils will now need to complete a ‘Quick Check’ task which includes questions within the module of ‘Rates of Reaction’, students can then self-assess or peer-assess their work using the mark scheme provided.
Finally, pupils can complete a crossword which summarizes definitions used within the ‘Rates of Reaction’ module, the answers for this are provided for self/peer assessment.
The plenary task required pupils to complete an exit card listing 3 things they have learnt today, 5 key words and 1 question to test their peers knowledge of a subject.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This task is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Cells’ SoW.
For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class.
I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This task is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Organisation’ SoW.
For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class.
I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This homework activity is designed for the KS3 Science Course, specifically Year 7 C1.2 Module on ‘Elements, Atoms & Compounds’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class.
I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included.
Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to relative atomic mass, including an explanation of how we can use the periodic table to find the atomic masses of different elements. In order to assess their understanding of this topic pupils will then complete a table identifying the atomic number, mass number and the number of electrons/protons/neutrons found within atoms of specific elements. This task can then be assessed using the answers provided in the PowerPoint presentation.
Pupils will now think about what the formula of a chemical compound tells us about the elements found in that compound. Using examples pupils will be taught about formulae, they will then be given a list of formulae for various different chemical compounds and will need to list the different elements found in that compound as well as the number of atoms of each of the elements. This task can then be assessed using the answers provided.
The next part of the lesson will focus on relative formula mass, pupils will be taught, using a worked example, how to calculate the relative formula mass for a chemical compound. They will then need to complete tasks involving the calculations of relative formula mass, once complete pupils can self-assess their work using the answers provided.
The last part of the lesson focuses on moles, the definition is first introduced to pupils which can be explained further using the link the video included in the PowerPoint. Pupils are then shown how to calculate the number of moles of a substance using the relative formula mass and actual mass of a substance. Pupils will be then need to complete a set of calculations to work out the moles of different substances, this task can be assessed using the answers provided. Pupils are lastly shown how to rearrange this calculation where needed, they can then apply this skill to a new set of problems. The answers to which are included in the PowerPoint presentation, pupils can use this to assess their work.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology specification, particularly the ‘Organisation’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins by introducing the heart as an organ and it’s function in the body, pupils will have a few minutes to read through the information on the slide as a ‘memory test’. Then move the slide forward where pupils have to copy and complete the information about the heart, using key words to help them. Pupils can then self-assess their work.
For the next activity pupils are given an information sheet providing information about the structure of the heart and the job of the blood vessels supplying/taking blood away from the hear. Pupils will also be given a worksheet which they will need to complete using this information.
Pupils will then be introduced to the idea of valves, they can watch a short video an have a look at the position of the valves within the heart. They will need to Think > Pair > Share ideas about the function of the valves in the heart. After a short class discussion the answer can be provided for them.
The next activity will require pupils to sort information into a flow diagram to demonstrate the route the blood flows through from the right atrium onwards. The words they need to fill in the boxes will be provided, they can self-assess their work once it has been completed.
The next part of the lesson focuses on problems with blood flow through the heart, firstly pupils are introduced to the idea of coronary arteries being blocked due to cholesterol/fatty deposits. They will provided with some information on the board and will need to answer questions on this information, which can then be assessed once the answers are revealed.
Then they will shown the differences between different types of treatment - surgery, stents or statins - and will be asked some questions about the uses, advantages and disadvantages of these examples of treatment for people with cardiovascular disease.
Again, all answers are provided for pupils to check their work throughout the lesson.
Plenary is to write a twitter message about what the students have learnt this lesson, make sure to #keywords!
Any questions please comment on the resource to ask me, any feedback if you have purchased this resource would be much appreciated :) thanks!
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Organisation’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by pupils given a bit of information about the tissues which make up the lining of the stomach. They will need to read this information in pairs and then answer questions in their book, once completed the pupils can self or peer-assess their work using the answers provided on the next slide.
Pupils will then be introduced to the digestive system, it’s role and the organs involved with this system. They should be able to remember some information from previous lessons on organ systems (see ‘Principles of organisation’ in my shop!).
Now, pupils must read through another card of information in pairs and complete tasks on the board, these tasks will require pupils to label a diagram of a human body to show the locations of the major organ systems and also describe the function of these organs.
The next task is a video which pupils will watch and answer questions, list of questions is provided as a worksheet. Pupils will then self-assess their work using the answers provided after the video has finished.
The final activity is an exam-style question, pupils will answer this on the sheet and then mark their work using the mark scheme.
The plenary task is a word search challenge, there are 10 words associated with digestion in the word search. Pupils will race to complete against each other to complete the word search. You can award a prize if you have any :)
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Combined Science:Trilogy Biology GCSE, particularly the ‘Bioenergetics’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with an introduction into how farmers and commercial plant growers maximise their yield and therefore their profit.
The main activity of the lesson involved pupils answering a variety of questions using information posters which can be positioned around the room or on desks, if you do not want pupils to move around. This activity is likely to take 25 minutes at least, once finished pupils can sit back in their seats and self or peer assess their work using the mark scheme provided.
The next activity should take around 15 minutes, it is an exam-style question involving plotting data and then analysis of this data. Pupils can complete and again self or peer assess their work.
The plenary activity is a 3-2-1 task, 3 facts, 2 key words and 1 question about the lesson today to test your peers.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know via the comments section and any feedback would be appreciated :)