Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Optical Isomerism. Suitable for AQA A level Chemistry.
By the end of this lesson KS5 students should be able to:
To know which types of molecules show optical isomerism
To be able to represent enantiomers as 3D molecules showing the chiral centres
To understand why racemic mixtures are optically inactive
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on naming organic compounds
By the end of the lesson students should be able to:
Know the IUPAC rules for naming alkanes and alkenes
Know the IUPAC rules for naming aldehyde, ketones and carboxylic acids
Construct structural or displayed formulae from named organic compounds and name organic compounds from the structural or displayed formulae
Students will be able to take rich notes on naming organic compounds, building on their KS4 knowledge on this topic
The teacher will be able to quickly assess students’ understanding of the how to name organic compounds by carrying our mini AfL tasks either on mini white boards or in students’ books
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on acid anhydrides and their reactions. Suitable for AQA A level Chemistry
By the end of this lesson KS5 students should be able:
To know how to draw and name acid anhydrides
To identify the products of and write equations for acylation reactions of water, alcohols, ammonia and amines with acid anhydrides
To outline the mechanism of nucleophilic addition-elimination reactions of acid anhydrides with water, alcohols, ammonia and primary amines
To state the advantages of using ethanoic anhydride rather than ethanoyl chloride in the production of aspirin
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on strong acids and the pH scale
By the end of this lesson KS5 students should be able to:
To calculate the pH of a strong acid
To convert between pH and [H+(aq)]
To apply the relationship between pH and [H+(aq)] to work out pH changes after dilution
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured lesson including starter activity, AfL work tasks on the combustion of alkanes. This lesson is suitable for the AQA specification
By the end of this lesson KS5 students should be able:
To understand why alkanes are good fuels
To recall the complete and incomplete combustions equations (both word and symbol) of alkanes
To explain the environmental problems associated with pollutant products when alkanes are used as fuels
To explain the use of catalytic convertors and processes such as flue gas desulfurisation to remove gaseous pollutants produced during alkane combustion
All questions come with answers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, main work task, bonus task and answers on Avogadro’s constant and calculating moles using the mole equation
The lesson begins with a 5-10 minute starter task (DO NOW) on previous KS5 knowledge about relative atomic mass of elements and calculating the relative molecular mass of compounds
By the end of this lesson KS5 students should be able to:
Know that the Avogadro constant is the number of particles in a mole
Calculate the number of moles present in a given mass of an element or compound using the mole equation
Rearrange the mole equation to calculate either the number of moles, Mr or mass of an element or compound
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete as well as a 20-30 minute independent work task
All tasks have worked out answers which will allow students to self assess their work in the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A well structured lesson including starter activity and mini AfL questions on concentration of solutions. Suitable for AQA GCSE Chemistry and higher tier combined science
The lesson begins with a short starter task (DO NOW) discussing students’ prior knowledge of concentration and solutions
Then by the end of this lesson KS4 students should be able to:
To relate mass, volume and concentration
To calculate the mass of solute in solution
To relate concentration in mol/dm3 to mass and volume
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and model example questions and answers and practice questions on the rate equation and calculating the rate constant
By the end of this lesson KS5 students should be able to:
To determine the order of a reactant from experimental data
To calculate the rate constant, K, from a rate equation
To calculate the units of the rate constant
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity on initial rates and clock reactions
By the end of this lesson KS5 students should be able to:
To determine the rate constant for a first order reaction from the gradient of a rate- concentration graph
To understand how rate-concentration graphs are created
To explain how clock reactions are used to determine initial rates of reactions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
5 Full Lessons on Energetics in AS Level Chemistry. See below for the lesson objectives
Lesson 1: Enthalpy and Reactions
LO1: To explain that some chemical reactions are accompanied by enthalpy changes that are exothermic or endothermic
LO2: To construct enthalpy profile diagrams to show the difference in the enthalpy of reactants compared with products
LO3: To qualitatively explain the term activation energy, including use of enthalpy profile diagrams
**Lesson 2: Enthalpy Changes **
LO1: To know what standard conditions are
LO2:To understand the terms enthalpy change of combustion, neutralisation and formation
LO3:To construct balanced symbol equations based on the terms enthalpy change of combustion, neutralisation and formation.
Lesson 3: Bond Enthalpies
LO1: To explain the term average bond enthalpy
LO2:To explain exothermic and endothermic reactions in terms of enthalpy changes associated with the breaking and making of chemical bonds
LO3:To apply average bond enthalpies to calculate enthalpy changes and related quantities
**Lesson 4: Calorimetry **
LO1:To determine enthalpy changes directly from appropriate experimental results, including use of the relationship q=mcΔT
LO2:To know the techniques and procedures used to determine enthalpy changes directly using a coffee cup calorimeter
LO3:To know the techniques and procedures used to determine enthalpy changes indirectly using a copper calorimeter
**Lesson 5: Hess’ Law & Enthalpy Cycles **
LO1: To state Hess’ Law
LO2: To calculate the enthalpy change of a reaction from enthalpy changes of combustion using Hess’ Law
LO3:To calculate the enthalpy change of a reaction from enthalpy changes of formation using Hess’ Law
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Student friendly personalised learning checklist for AQA A level Chemistry (7405)
This resource includes key specification statements for papers 1-3
This resource has been split into three separate Excel documents for:
3.1 physical chemistry
3.2 inorganic chemistry
3.3 organic chemistry
The exam paper number linked to each topic can be found in the left hand corner of each checklist to aid student exam revision.
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Electronegativity and Bond Polarity
By the end of this lesson KS5 students should be able to:
To define the term electronegativity
To explain the trend in electronegativity down a group and across a period
To explain what a polar covalent bond is bond and to illustrate this type of bond in a molecule
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
15 Full Lesson Bundle (included a free bonus lesson) covering the module 2.1 on Atoms & Reactions from the OCR A Level Chemistry A Specification. See below for the lesson objectives.
Lesson 1: Atomic Structure & Isotopes
To describe the atomic structure of an atom
To describe atomic structure in terms of protons, neutrons and electrons for atoms and ions, given the atomic number, mass number and any ionic charge
To define the term isotopes and to identify the atomic structure of isotopes in terms of protons, neutrons and electrons
Lesson 2: Relative Masses
To define the terms relative atomic mass, relative formula mass and relative molecular mass
To calculate the relative formula mass and relative molecular mass of compounds and molecules
Lesson 3: Mass Spectroscopy
To determine the relative atomic masses and relative abundances of the isotope using mass spectroscopy
To calculate the relative atomic mass of an element from the relative abundances of its isotope
Lesson 4: Ions & The Periodic Table
To predict the ionic charge of ions based on the position of the element in the periodic table
To recall the names of common atomic and molecular ions
To be able write the formula of ionic compounds
Lesson 5: Empirical and Molecular Formulae
To understand what is meant by ‘empirical formula’ and ‘molecular formula’
To calculate empirical formula from data giving composition by mass or percentage by mass
To calculate molecular formula from the empirical formula and relative molecular mass.
**Lesson 6: Water of Crystallisation **
To know the terms anhydrous, hydrated and water of crystallisation
To calculate the formula of a hydrated salt from given percentage composition or mass composition
To calculate the formula of a hydrated salt from experimental results
Lesson 7: Moles & Volumes (Solutions & Gas Volumes)
To calculate the amount of substance in mol, involving solution volume and concentration
To understand the terms dilute, concentrated and molar
To explain and use the term molar gas volume
To calculate the amount of substance in mol, involving gas volume
Lesson 8: Moles & Equations
To know how to balance symbol equations
To calculate the moles of reactants or products based on chemical equations and mole ratios
To calculate the masses of reactants used or products formed based on chemical equations and mole ratios
Lesson 9: Percentage Yield and Atom Economy
To know how to balance symbol equations
To calculate atom economy and percentage yield from balanced symbol equations
To calculate the masses and moles of products or reactants from balanced symbol equations
Lesson 10: Acids, Bases & Neutralisation
To know the formula of common acids and alkalis
To explain the action of an acid and alkali in aqueous solution and the action of a strong and weak acid in terms of relative dissociations
To describe neutralisation as a reaction of:
(i) H+ and OH– to form H2O
(ii) acids with bases, including carbonates, metal oxides and alkalis (water-soluble bases), to form salts, including full equations
Lesson 11: Acid-Base Titration Procedures
To outline the techniques and procedures used when preparing a standard solution of required concentration
To outline the techniques and procedures used when carrying out acid–base titrations
To determine the uncertainty of measurements made during a titration practical
Lesson 12: Acid-Base Titration Calculations
To apply mole calculations to complete structured titration calculations, based on experimental results of familiar acids and bases.
To apply mole calculations to complete non-structured titration calculations, based on experimental results of non-familiar acids and bases
Lesson 13: Oxidation States
To recall the rules for oxidation states of uncombined elements and elements in compounds
To determine the oxidation states of elements in a redox reaction
To identify what substance has been reduced or oxidised in a redox reaction
Lesson 14: Half Equations (Redox Reactions)
To understand what a half equation is
To explain what a redox equation is
To construct half equations from redox equations
Lesson 15: Redox Equations
To identify what substance has been reduced or oxidised in a redox reaction
To construct balanced half equations by adding H+ and H2O
To construct full ionic redox equations from half equations
**Note: Lesson 15 is a free bonus (stretch & challenge) lesson that focuses on redox in year 13 (module 5.2.3 (spec points a-c)) **
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the Ionic Product of Water, Kw
By the end of this lesson KS5 students should be able to:
LO1: To recall the expression for the ionic product of water, Kw (ionisation of water)
LO2: To calculate the pH of strong bases using Kw
LO3: To apply the principles for Kc, Kp to Kw
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks Electrons and Atomic Orbitals
By the end of this lesson KS5 students should be able to:
To know that atomic orbitals are a region around the nucleus that occupy electrons
To illustrate the shape of s, p and d orbitals
To describe the number of orbitals that make up the s, p and d sub shells and the number of electrons that fill the sub shells
To deduce the electronic configuration of atoms and ions in the s and p-block
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Important Note For Teachers: A lesson on electronic configuration of d-block elements is available as a separate lesson in my shop
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and plenary task all with answers on pH indicators & Titration Curves
By the end of this lesson KS5 students should be able to:
LO1. To explain indicator colour changes in terms of equilibrium shift between the HA and A- forms of the indicator
LO2. To explain the choice of suitable indicators given the pH range of the indicator
LO3. To describe an experiment for creating a titration curve
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on reacting masses (moles and chemical equations)
By the end of the lesson students should be able to:
Know how to balance symbol equations
Calculate the moles of reactants or products based on chemical equations and mole ratios
Calculate the masses of reactants used or products formed based on chemical equations and mole ratios
Students will be able to take rich notes on reacting masses, building on their KS4 knowledge on this topic
The teacher will be able to quickly assess students’ understanding of the how to balanced equations and calculate reacting masses from chemical equations by carrying our mini AfL tasks either on mini white boards or in students’ books
The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A well structured lesson including starter activity, AfL activities and main work task with answers on reactions of metals with acids. Suitable for AQA GCSE Chemistry and higher tier combined science
The lesson begins with a short starter task (DO NOW) recapping the definitions of oxidation, reduction and displacement reactions
Then by the end of this lesson KS4 students should be able to:
Describe how to make salts from metals and acids
Construct word equations from metal and acid reactions
Write full balanced symbol equations for making salts
The teacher will be able to check students have met these learning objectives through mini AfL tasks and main work tasks for students to complete
Please download the free resource from my shop called: ‘names and formulae of compounds and ions’ to support students when writing symbol equations for this lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson (Part 2 of 2) including starter activity, AfL work tasks and practice questions on Standard Electrode & Cell Potentials
By the end of this lesson KS5 students should be able to:
LO1: To use the term standard electrode potential E⦵ including its measurement using a hydrogen electrode
LO2: To calculate a standard cell potential by combining two standard electrode potentials
LO3: To predict the feasibility of electrode potentials to modern storage cells
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on naming and drawing aromatic compounds
**By the end of this lesson KS5 students should be able to:
**1. State the IUPAC name of substituted aromatic compounds
**2. Construct the structure of aromatic compounds based on their IUPAC names
**3. Analyse the correct numbering system for di and trisubstituted aromatic compounds
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above