Hero image

Teach Science & Beyond

Average Rating4.79
(based on 28 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

134k+Views

86k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Transition Metals (OCR)
TeachScienceBeyondTeachScienceBeyond

Transition Metals (OCR)

6 Resources
5 Full Lesson Bundle + FREE practical lesson covering Transition Elements from OCR A Level Chemistry. Please review the learning objectives below Lesson 1: Transition Metals & Their Compounds To know the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge To understand the elements Ti–Cu as transition elements To illustrate, using at least two transition elements, of: (i) the existence of more than one oxidation state for each element in its compounds (ii) the formation of coloured ions (iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry Lesson 2: Transition Metals & Complex Ions To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands To use the terms complex ion and coordination number To construct examples of complexes with: (i) six-fold coordination with an octahedral shape (ii) four-fold coordination with either a planar or tetrahedral shape Lesson 3: Stereoisomerism in Complex Ions To understand the types of stereoisomerism shown by metal complexes, including those associated with bidentate and multidentate ligands including: (i) cis–trans isomerism e.g. Pt(NH3)2Cl2 (ii) optical isomerism e.g. [Ni(NH2CH2CH2NH2)3] 2+ To understand the use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division Lesson 4: Precipitation and Ligand Substitution Reactions To recall the colour changes and observations of reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ with aqueous sodium hydroxide and ammonia (small amounts and in excess) To construct ionic equations for the precipitation reactions that take place To construct ionic equation of the ligand substitution reactions that take place in Cu2+ ions and Cr3+ ions To explain the biochemical importance of iron in haemoglobin, including ligand substitution involving O2 and CO Lesson 5: Transition Elements & Redox Reactions To interpret the redox reactions and accompanying colour changes for: (i) interconversions between Fe2+ and Fe3+ (ii) interconversions between Cr3+ and Cr2O72− (iii) reduction of Cu2+ to Cu+ (iv) disproportionation of Cu+ to Cu2+ and Cu To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions Lesson 6: Practical on Precipitation and Ligand Substitution Reactions To make observations of the reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ in aqueous sodium hydroxide and ammonia To construct ionic equations for the redox reactions that take place For 23 printable flashcards on this chapter please click here: https://www.tes.com/teaching-resource/resource-12637622 For lessons on redox titrations involving transition metals please click here : Part 1: https://www.tes.com/teaching-resource/ocr-redox-titrations-part-1-12244792 Part 2: https://www.tes.com/teaching-resource/ocr-redox-titrations-part-2-12244807 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Energy (OCR A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Energy (OCR A Level Chemistry)

6 Resources
6 Full Lesson Bundle covering the first 6 chapters in the OCR A Level Chemistry Chapter on Energy Lesson 1: Lattice Enthalpy **By the end of the lesson students will: Explain the term lattice enthalpy Understand the factors that determine the size of lattice enthalpy Explain the terms standard enthalpy change of formation and first ionisation energy** Lesson 2: Born-Haber Cycles **By the end of the lesson students will: **1. Construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values **2. Calculate the value for lattice enthalpy from Born Haber Cycle diagrams **3. Calculate other enthalpy change values from Born Haber Cycle diagrams Lesson 3: Enthalpy Changes of Solution & Hydration **By the end of the lesson students will: **1. Define the terms enthalpy change of solution and hydration **2. Construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid 3. Qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration Lesson 4: Entropy **By the end of lesson students will: **1. Know that entropy is a measure of the dispersal of energy in a system, which is greater the more disordered a system **2. Explain the difference in entropy of solids, liquids and gases **3. Calculate the entropy change of a reactant based on the entropies provided for the reactants and products Lesson 5: Gibbs Free Energy (Part 1) **By the end of the lesson students will: **1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system **2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T **3.Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation Lesson 6: Gibbs Free Energy (Part 2) By the end of the lessons students will: 1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system 2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or 3. Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Free Radical Substitution (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Free Radical Substitution (AS Chemistry)

(0)
A structured lesson including starter activity, AfL work tasks and lesson slides on free radical substitution reactions By the end of this lesson KS5 students should be able to: 1.To know what a free radical is 2. To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination 3. To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Gibbs Free Energy (Part 1)
TeachScienceBeyondTeachScienceBeyond

Gibbs Free Energy (Part 1)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Gibbs Free Energy (Part 1) By the end of this lesson KS5 students should be able: To explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system To recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T To calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Introduction to Amines
TeachScienceBeyondTeachScienceBeyond

Introduction to Amines

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) an Introduction to Amines By the end of this lesson KS5 students should be able to: To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Kinetics   A Level Chemistry
TeachScienceBeyondTeachScienceBeyond

Kinetics A Level Chemistry

8 Resources
7 Full Lesson Bundle + A Bonus Revision Lesson which covers the Kinetics (How Fast?) chapters from the OCR A Level Chemistry Specification (also suitable for the AQA and Edexcel Spec- see Learning Objectives below) Lesson 1: Order of Reactants Lesson 2: The Rate Equation Lesson 3&4 Concentration-Time Graphs Lesson 5: Initial Rates and Clock Reactions Lesson 6: The Rate Determining Step Lesson 7: The Arrhenius Equation Lesson 8: Revision Lesson Learning Objectives: Lesson 1: LO1: To recall the terms rate of reaction, order, overall order and rate constant LO2: To describe how orders of reactants affect the rate of a reaction LO3: To calculate the overall order of a reaction Lesson 2: LO1: To determine the order of a reactant from experimental data LO2: To calculate the rate constant, K, from a rate equation LO3: To calculate the units of the rate constant Lesson 3&4: LO1: To know the techniques and procedures used to investigate reaction rates LO2: To calculate reaction rates using gradients from concentration-time graphs LO3: To deduce zero & first order reactants from concentration-time graphs LO4: To calculate the rate constant of a first order reactant using their half-life Lesson 5: LO1: To determine the rate constant for a first order reaction from the gradient of a rate- concentration graph LO2: To understand how rate-concentration graphs are created LO3: To explain how clock reactions are used to determine initial rates of reactions Lesson 6: LO1: To explain and use the term rate determining step LO2: To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction LO3: To predict the rate equation that is consistent with the rate determining step Lesson 7: LO1: Explain qualitatively the effect of temperature change on a rate constant,k, and hence the rate of a reaction LO2: To Know the exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, k = Ae–Ea/RT LO3: Determine Ea and A graphically using InK = -Ea/RT+ InA derived from the Arrhenius equation Lesson 8: This is an engaging KS5 revision lesson the Kinetics topic in A Level Chemistry (Year 13) Students will be able to complete three challenging question rounds on kinetics covering: Measuring Reaction Rates Orders of reactants Concentration-time graphs Rate-concentration graphs Clock Reactions Initial rates Arrhenius Equation Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Gibbs Free Energy (Part 2)
TeachScienceBeyondTeachScienceBeyond

Gibbs Free Energy (Part 2)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Gibbs Free Energy (Part 2) By the end of this lesson KS5 students should be able: To state and use the relationship ΔG = ΔH-TΔS To draw a link between ΔG and feasibility To explain the limitations of predictions made by ΔG about feasibility, in terms of kinetics. The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Preparation of Amines
TeachScienceBeyondTeachScienceBeyond

Preparation of Amines

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on The Preparation of Amines By the end of this lesson KS5 students should be able to: To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Kinetics: The Rate-Determining Step (A level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Kinetics: The Rate-Determining Step (A level Chemistry)

(0)
A structured A level Chemistry lesson including starter activity, AfL work tasks and lesson slides with answers on the rate determining step By the end of this lesson KS5 students should be able to: To explain and use the term rate determining step To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction To predict the rate equation that is consistent with the rate determining step
Redox &  Electrode Potentials (OCR A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Redox & Electrode Potentials (OCR A Level Chemistry)

8 Resources
8 Full Lesson Bundle which covers the redox and electrode potential section of the OCR Energy Chapter: Lesson 1 & 2: Redox Reactions Lesson 3& 4: Redox Titrations Lesson 5&6: Standard Electrode & Cell Potentials Lesson 7: Limitations of Cell Potentials Lesson 8: Storage & Fuel Cells Learning Objectives: Lesson 1: LO1: To identify the oxidation numbers of elements in ions and compounds LO2: To construct half-equations from redox equations LO3: To explain and use the terms oxidising agent and reducing agent Lesson 2: LO1: To understand that the overall increase in oxidation number will equal the overall decrease in oxidation number LO2: To construct balanced half equations and overall redox equations from reactions in acidic conditions LO3: To construct balanced half equations and overall redox equations from reactions in alkaline conditions (stretch & challenge) Lesson 3: LO1: To understand what a redox titration is. LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4- LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives Lesson 4: LO1: To describe the practical techniques and procedures used to carry out redox titrations for I2/S2O32- LO2: To calculate structured titration questions based on experimental results of redox titrations involving I2/S2O32- and non familiar redox systems LO3: To calculate non-structured titration questions based on experimental results of I2/S2O32- Lesson 5: LO1: To describe techniques and procedures used for the measurement of : i) Cell potentials of metals or non-metals in contact with their ions in aqueous solution ii) Ions of the same element in different oxidation states in contact with a Pt electrode Lesson 6: LO1: To use the term standard electrode potential E⦵ including its measurement using a hydrogen electrode LO2: To calculate a standard cell potential by combining two standard electrode potentials LO3: To predict the feasibility of electrode potentials to modern storage cells Lesson 7: LO1. To understand the limitations of predicting the feasibility of a reaction using cell potentials due to kinetics and non-standard conditions LO2. To explain why electrochemical cells may not work based on the limitations of using cell potentials Lesson 8: LO1: To understand the application of the principles of electrode potentials to modern storage cells LO2: To explain that a fuel cell uses the energy from a reaction of a fuel with oxygen to produce a voltage LO3: To derive the reactions that take place at each electrode in a hydrogen fuel cell The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Haloalkanes (AQA)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Haloalkanes (AQA)

(0)
A complete lesson including starter activity, AfL work tasks and lesson slides on halogenoalkanes and their chemical reactions By the end of this lesson KS5 students should be able to: To Identify haloalkanes as primary, secondary or tertiary To understand why haloalkanes are more reactive than alkanes To describe what a nucleophile is and to state some examples To outline the mechanism of nucleophilic substitution and elimination reactions involving haloalkanes The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Chemistry: Reactivity Series and Metal Extraction
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Reactivity Series and Metal Extraction

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks on the reactivity series and metal extraction. Suitable for AQA GCSE Chemistry and Combined Science (higher and foundation) By the end of this lesson KS4 students should be able to: Deduce an order of reactivity of metals based on experimental results Explain reduction and oxidation by loss or gain of oxygen Explain how the reactivity is related to the tendency of the metal to form its positive ion The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Reactions and Uses of Esters
TeachScienceBeyondTeachScienceBeyond

Reactions and Uses of Esters

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the reactions and uses of esters. Suitable for AQA A level Chemistry By the end of this lesson KS5 students should be able to: To describe some common uses of esters To construct equations for the hydrolysis of esters in acidic or alkaline conditions To describe how soap and biodiesel are made and can write equations for these reactions for specified animal fats/ vegetable oils Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Addition Reactions of Alkenes (AQA)
TeachScienceBeyondTeachScienceBeyond

Addition Reactions of Alkenes (AQA)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and lesson slides on addition reactions of alkenes. Suitable for the AQA specification By the end of this lesson KS5 students should be able to: To know what an electrophile is To describe what an electrophilic addition reaction is To outline the mechanism for electrophilic addition Mechanisms for electrophilic addition include halogen halides, halogen molecules, hydrogen molecule and sulfuric acid Explanations surrounding major and minor products are also discussed in this lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Chemistry: Moles and Equations (higher tier)
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Moles and Equations (higher tier)

(0)
A complete lesson including starter activity, AfL activities and main work task on amount of substance in equations. Suitable for AQA GCSE Chemistry and higher tier combined science The lesson begins with a short starter task (DO NOW) recapping moles Then by the end of this lesson KS4 students should be able to: calculate the masses of substances in a balanced symbol equation calculate the masses of reactants and products from balanced symbol equations calculate the mass of a given reactant or product. The teacher will be able to check students have met these learning objectives through mini AfL tasks and main work tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Enthalpy Change of Hydration & Solution
TeachScienceBeyondTeachScienceBeyond

Enthalpy Change of Hydration & Solution

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Enthalpy Change of Hydration & Soluton By the end of this lesson KS5 students should be able to: To define the terms enthalpy change of solution and hydration To construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid To qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Born-Haber Cycles
TeachScienceBeyondTeachScienceBeyond

Born-Haber Cycles

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Born Haber Cycles By the end of this lesson KS5 students should be able to: 1.To construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values 2.To calculate the value for lattice enthalpy from Born Haber Cycle diagrams 3.To calculate other enthalpy change values from Born Haber Cycle diagrams All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Acids, Bases & Buffers (OCR)
TeachScienceBeyondTeachScienceBeyond

Acids, Bases & Buffers (OCR)

11 Resources
10 Full Lesson Bundle + BONUS lesson on Acids, bases & buffers. This bundle covers the OCR A Level Chemistry specification. Please review the learning objectives below. Lesson 1: Bronsted-Lowry Acid and Bases To describe the difference between a BrØnsted Lowry acid and base To identify conjugate acid-base pairs To explain the difference between monobasic, dibasic and tribasic acids To understand the role of H+ in the reactions of acids with metals and bases (including carbonates, metal oxides and alkalis), using ionic equations Lesson 2: Strong Acids & The pH Scale To calculate the pH of a strong acid To convert between pH and [H+(aq)] To apply the relationship between pH and [H+(aq)] to work out pH changes after dilution **Lesson 3 - The Acid Dissociation Constant ** To understand the acid dissociation constant, Ka, as the extent of acid dissociation To know the relationship between Ka and pKa To convert between Ka and pKa Lesson 4- pH of weak acids To recall the expression of pH for weak monobasic acids To calculate the pH of weak monobasic acids using approximations To analyse the limitations of using approximations to Ka related calculations for ‘stronger’ weak acids Lesson 5 - The ionic product of water To recall the expression for the ionic product of water, Kw (ionisation of water) To calculate the pH of strong bases using Kw To apply the principles for Kc, Kp to Kw Lesson 6-9 - Buffer Solutions (3 part lesson) Part 1: Explaining How Buffer Solutions Work To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base To describe how a buffer solution is formed using weak acids, salts and strong alkalis To explain the role of the conjugate acid-base pair in an acid buffer solution such as how the blood pH is controlled by the carbonic acid–hydrogencarbonate buffer system Part 2: Buffer Solution Calculations (Part 1) To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution Part 3: Buffer Solution Calculations (Part 2) To calculate the pH of a weak acid-strong alkali buffer solution To calculate equilibrium concentrations, moles or mass of the components of a weak acid- strong alkali buffer solution BONUS Lesson 9 : Revision on Buffer Solutions To review how to calculate the pH of a buffer solution containing a weak acid and a strong alkali To review how to calculate the pH of a buffer solution containing a weak acid and the salt of the weak acid Lesson 10- Neutralisation & Titration Curves To interpret titration curves of strong and weak acids and strong and weak bases To construct titration curve diagrams of strong and weak acids and strong and weak bases **Lesson 11- pH indicators & Titration Curves ** To explain indicator colour changes in terms of equilibrium shift between the HA and A- forms of the indicator To explain the choice of suitable indicators given the pH range of the indicator To describe an experiment for creating a titration curve Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Acyl Chlorides and Their Reactions (AQA)
TeachScienceBeyondTeachScienceBeyond

Acyl Chlorides and Their Reactions (AQA)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on acyl chlorides and their reactions. Suitable for AQA A level Chemistry By the end of this lesson KS5 students should be able: To know how to draw and name acyl chlorides To identify the products of and write equations for acylation reactions of water, alcohols, ammonia and amines with acyl chlorides To outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides water, alcohols, ammonia and primary amines Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Kinetics: The Arrhenius Equation (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Kinetics: The Arrhenius Equation (A Level Chemistry)

(0)
A structured KS5 lesson including starter activity and modelled practice questions on The Effect of Temperature on the Rate Constant (The Arrhenius Equation). By the end of this lesson KS5 students should be able to: Explain qualitatively the effect of temperature change on a rate constant,k, and hence the rate of a reaction To Know the exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, k = Ae–Ea/RT Determine Ea and A graphically using InK = -Ea/RT+ InA derived from the Arrhenius equation Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above